Work Zone Applications of Bluetooth Traffic Detection

John W. Shaw, PE
Traffic Data & Microsimulation Manager,
Wisconsin Traffic Operations and Safety Laboratory

FHWA Work Zone Peer Exchange
Atlanta, GA
08-May-2013
Would You Like To...

- Know when traffic in your work zone is starting to slow down?
- Provide travel times for alternate routes?

DOWNTOWN VIA

WORK ZONE: 30 MIN
ALTERNATE ROUTE: 25 MIN
Would You Like To...

- Compare actual work zone delay with what was predicted in the TMP/MOT?
- Evaluate locational differences in work zone throughput?
- See how much traffic diverted to the alternate route?
- See whether people who diverted actually saved time?
What is Bluetooth?

- 2.4 GHz wireless system for connecting electronic devices
- Low power, low cost.
- Range ~100 meters.
- High level of data/content security.
- Every device has unique MAC address.
- No master database of MAC addresses.
- Used for traffic detection since 2008.
Bluetooth Data Collection

Database Server

Field device with Bluetooth receiver and cellular modem

Bluetooth-enabled handsfree kit in car
Bluetooth Data Collection

Detector A at 45.002, -89.9638
MAC ID 1234456890ABCDEF
07:01:05

Detector B at 45.002, -90.0044
MAC ID 1234456890ABCDEF
07:03:35

Central Server
MAC ID 1234456890ABCDEF
Elapsed Time 00:02:30
Distance 2 Miles = 48 mph

Elapsed Time 00:02:30
Distance 2 Miles = 48 mph
1. **“Listen”** for Bluetooth MAC addresses at two or more locations.
2. **Record** observation time and location.
3. **Transmit** observations to central server.
4. **Match** MAC addresses spatially.
5. **Compute** travel time.
6. **Filter out** unreasonable travel times.
7. **Evaluate and Report** Speed, OD and Route.
8. **Combine** with volume data if appropriate.
What Can Bluetooth Do?

One Detector:
• Not Much

Two Detectors:
• Trip Time (Speed)

Three Detectors:
• Origin and Destination

Four or More Detectors:
• Route Choice
By Itself, Bluetooth Provides...

- Discrete, time-stamped observations of people/vehicles moving around.
- But NOT traffic volume.
Field Equipment
Installation

Pleasant Prairie
EXIT 347
Equipment Set-up
Cabinet-Mount Examples

- DeepBlue (TrafficNow)
- BlueFAX (Traffax)
- BlueTOAD (Trafficcast)
- BlueCompass (Acyclica)
- Post Oak Traffic Systems
Other Configurations

Side-Fire (TrafficNow)

MiniTOAD (Trafficcast)

Portable (Acyclica)

DIN Rail (TrafficNow)

Portable (Traffax)
Travel Time
Western Milwaukee Suburbs

• 5.5 mile segment carrying 130,000 AADT
• WisDOT concerned about accuracy of DMS travel times
• Current system using data from 41 loop detectors
• Some loops reporting zero speeds
• Speeds sensitive to ongoing calibration
Findings

- Loop speeds low in free-flow conditions
- Loop speeds too high in congestion
- BT pairing sampling rate <3% (2010)
Recent Work Zone Field Studies

- Milwaukee
- Portage
- Grafton
- Endeavor
Work Zone Traffic Performance

Demand → Capacity → Diversion
Freeway Work Zone Capacity

Why do some work zones operate better than others?

FIGURE 6 The traffic flow data and work zone speed-flow curve.
Rural Freeway WZ Capacity, Delay & Route Choice (Portage, WI)

- Weekend recreational route
- 30+ miles
- 13 BT units
- Mainline + Alternates
- Volume counts
Results: Rural Freeway Capacity

Stable Flow
~1625 PCE/hr/ln

Queue Discharge
~1450 PCE/hr/ln

Recovery

PCE: Passenger Car Equivalent
Results: Rural Route Choice

- Drivers can respond to WZ congestion in a variety of ways.
- Modest increases in traffic on alternate routes
- Relatively few exited and then returned to freeway.
- More commonly, local traffic stayed on local routes until past the work zone.
Urban Freeway WZ Capacity, Delay & Route Choice (Milwaukee Suburbs)

- Freeway Mainline + Two Alternate Routes
- Bluetooth Detectors + Volume Counts
Results: Urban Freeway Capacity

Stable Flow
AM: 1825-2200 PCE/hr/lane
PM: 1825-1950 PCE/hr/lane

Queue Discharge
AM: 1600-1825 PCE/hr/lane
PM: 1725-1825 PCE/hr/lane
Results: Urban Route Choice

- Commuters very willing to use alt routes.
- Increased traffic on alt routes even when mainline was *not* congested.
Lessons Learned
Lessons Learned

- Detection rates vary by route type and time of day
- Since Jan 2012, USDOT requires truck drivers to use hands-free devices.
Figure 3-13: Raw Observations. US-50. South Lake Tahoe, CA to Placerville, CA
The Secret is in the Software

Options

- Proprietary vendor-supplied filtering and matching services
- Free software from sensor vendors (basic)
- Third-party software (advanced)
Bluetooth vs Side-Fire Radar

Bluetooth
- Speed (lagging)
- Travel time for a route segment
- Accurate at all speeds
- Many mounting options
- Observes all traffic
- Low power consumption
- Requires at least 2 detectors
- $2500-5000 per detector
- Some vendors offer rental

Radar
- Speed + Volume
- Point speed at a specific location
- Not accurate at low speed
- Pole-mount at roadside
- Observes specific lanes
- 8 to 11 watts continuous
- Can get data from a single detector
- About $5000 per detector
Bluetooth Pro & Con

Strengths
- Inexpensive
- Low power consumption
- Highly accurate speed data
- Easy to extend study duration
- Efficient method for collecting OD info
- Only practical way to collect route choice data

Limitations
- Low sampling rates
- Capture rates can vary by time of day (prob. trucks)
- Sometimes sensitive to:
 - Site Characteristics
 - Antenna Placement
 - Loss of Power/Comm
 - Data processing assumptions
Questions?
John W. Shaw
jwshaw@wisc.edu
414-227-2150