ACCELERATED BRIDGE CONSTRUCTION IN IOWA

Ahmad Abu-Hawash, PE
Iowa Department of Transportation
Office of Bridges and Structures

Accelerated Road Works for Work Zone Safety and Mobility
June 5-6, 2012 Denver, Colorado
Outlines

- ABC/PBES Concept, Advantages, & Disadvantages.
- Iowa’s ABC Deployment Strategy
- Case Study: Keg Creek Lessons Learned
Prefabricated Bridge Elements and Systems (PBES): it is a strategy to accelerate bridge construction that employs prefabricated individual Elements such as beam, deck, abutment footing, pier column, pier cap, etc. Or entire superstructure System that is assembled off-site and moved into place.
Why use ABC?

– To deal with schedule constraints
 - Limited time-window due to special events
 - Emergency replacement due to natural disasters, accidents, or intentional acts
– To minimize impact on local traffic
 - Access to business
 - Commuters
 - Essential services
– To deal with the unavailability of suitable detour
ABC: Benefits

- Reduced public inconvenience
- Improved public perception
- Improved road users and workers safety
- Reduce negative economic impact on local businesses
- Perhaps improve the durability of the structure
ABC: Disadvantages

- Substantial increase in construction cost: fewer bridge replacements
- Contractors are generally uncomfortable with the PBES concept: higher cost
- Requires the development of new design standards and specifications: higher design cost
Iowa DOT ABC Deployment Strategy

- Develop skills and design details through demonstration projects (IBRD, HfL, SHRP2, ..)
- Invest in research and include laboratory and field testing to confirm constructability and performance.
- Participate in national pooled fund studies
- Involve local construction industry and hold ABC workshops.
- Develop policies for ABC
Madison County

- 3'-6" to 3'-9"
- 4 Pile Spaces @ 6'-0" = 24'-0"
- 1'-8"
- G6G5G4G3G2G1
- HP Steel Bearing Pile
- 2-7/8" Dia. x 5" Studs Ea. Side of Pile Typ.
- Grouted Keys
- Steel Post and Guardrail
- 4'-0"x2'-3" Box Girder
- 3'-0" Wide Precast Cap Beam
- 3'-0" Grout Void
- 27'-4"
- Precast Cap Beam
- 2'-0"
- 1'-8"
- 3'-9"
- 1'-8"
Buena Vista County

Steel Post and Guardrail

4'-0" x 19' Deck Beam

2 - 2" Dia. x 6" Studs Ea. Side of Pile (Typ.)

1'-9" Ø Galvanized C.M.P. Pile Sleeve

Grouted Keys

28'-0"

Grout Void Solid

Neoprene Bearing Pad

3'-0" Wide Precast Cap Beam

28'-2"

4 Pile Spaces @ 6'-0" = 24'-0"

HP 10 x 57 Steel Bearing Pile

3'-0" Wide Precast Cap Beam

2'-0"
24th Street Bridge
Overview

Reconstruct the 24th St Interchange over I-80/I-29
Replace existing structure with a two-span CWPG
Use staged construction to maintain one-lane traffic in each direction plus a turning lane
ABC techniques used:
 – Full-Depth Precast Deck Panels
 – High Performance Concrete and Steel
 – Structural Health Monitoring
 – Fully Contained flooded backfill
 – A+B Bidding
 – ITS
Accelerated Bridge Approach Replacement
O'Brien County Project
Bremer County Project
Iowa DOT ABC Deployment Strategy

- Develop skills and design details through demonstration projects (IBRD, HfL, SHRP2, ..)
- Invest in research and include laboratory and field testing to confirm constructability and performance.
- Participate in national pooled fund studies
- Involve local construction industry and hold ABC workshops.
- Develop policies for ABC
Iowa DOT ABC Deployment Strategy

- Develop skills and design details through demonstration projects (IBRD, HfL, SHRP2, ..)
- Invest in research and include laboratory and field testing to confirm constructability and performance.
- Participate in national pooled fund studies
- Involve local construction industry and hold ABC workshops.
- Develop policies for ABC
Iowa DOT ABC Deployment Strategy

- Develop skills and design details through demonstration projects (IBRD, HfL, SHRP2, ..)
- Invest in research and include laboratory and field testing to confirm constructability and performance.
- Participate in national pooled fund studies
- Involve local construction industry and hold ABC workshops.
- Develop policies for ABC
Iowa DOT ABC Deployment Strategy

- Develop skills and design details through demonstration projects (IBRD, HfL, SHRP2, ..)
- Invest in research and include laboratory and field testing to confirm constructability and performance.
- Participate in national pooled fund studies
- Involve local construction industry and hold ABC workshops.
- Develop policies for ABC
ABC Policies

The policy for ABC implementation is being developed. A target completion date of July 1st.

Assembled a team of engineers from various disciplines to develop the policy with strong support from top management.

The policy will utilize decision making tools such as:

- ABC Rating Score & Flow Chart similar to Utah as a first level filter
- AHP Decision Making Tool as a second level confirmation and further evaluation of alternatives.
ABC Implementation Barriers

- Funding to offset ABC construction cost – need to identify new revenues or alternative funding
- Resistance from some local contractors to ABC – working with industry to change the climate
- Limited contracting methods – since Design Build (DB) is not allowed in Iowa we are looking at the partial DB option
- Design aids – we are working on ABC design policies, specifications and standard details.
- Limited experience in ABC design – several ABC projects have been identified to attain experience for our engineers.
Case Study: Keg Creek
Lessons Learned
Background

SHRP2 – R04 Research Team needed to demonstrate ABC design concept for typical multi-span stream crossings – a common rural bridge replacement

Proposed a demonstration project in Iowa

Successful project may pave the way for developing national ABC standards

A bridge on US 6 over Keg Creek in Pottawattamie County met the objectives
Project Data

Design: HNTB (M. LaVoilette, B. Sivakumar, F. Hubbard, and K. Price)
Contractor: Godbersen-Smith (K. Triggs & M. Freier) $2,658,823 (7 bidders from $2.66M to $3.99M)
Unit cost: $231 per sq.ft. ($124 estimated for conventional)
Contract period:
- Phase 1 – Drilled shaft installation (9 working days)
- Phase 2 – ABC Period (14 calendar days)
- Phase 3 – Revetment, grading, and flumes (20 working days)
Incentive/Disincentive on 14 days ABC: $22,000 per day
ABC approximate start date: 9/19/11 (actual 10/17/11)
SHRP2 funds: $250,000 (M. Starnes – Program Officer)
HFL funds: $600,000 or 20% (M. Huie – Program Coordinator)
EXISTING BRIDGE

180’ x 28’-0 Continuous concrete girder bridge

- Built in 1953
- 3 spans 53’6”, 73’, 53’6”
- Moderate sized, typical rural crossing
- Small, meandering stream
- Narrow bridge width on primary road system
- Sufficiency rating 33
Why Keg Creek?

- Typical rural, moderate size stream crossing in Iowa. Indicative of many bridges throughout the mid-west and country. SHRP2 looking to standardize ABC design plans.
- Detour: 22 mile detour less desirable for traveling public over 4 to 6 month period versus 2 week ABC period.
- Schedule: already programmed for 2011 construction.
Why Keg Creek?

- Size of bridge favorable for pilot project in term of cost.
- Low AADT = ideal for demonstration site.
- Narrow existing bridge width allowed for drilled shaft foundation construction prior to bridge closure (outside of ABC).
- Bridge geometry: 0 degree skew and flat grade.
AHP Analysis

AHP analysis was not used in site selection process but provided confirmation.
14-Day ABC Timeline
(as proposed by the Contractor)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CLOSE HWY 6</td>
<td></td>
</tr>
<tr>
<td>BRIDGE DEMOLITION</td>
<td></td>
</tr>
<tr>
<td>DRIVE ABUT. PILING/SET COLUMNS</td>
<td></td>
</tr>
<tr>
<td>SET ABUT.'S & ABUT. WINGWALLS/POUR SELF LEVELING CONC.</td>
<td></td>
</tr>
<tr>
<td>SET CAPS</td>
<td></td>
</tr>
<tr>
<td>ERECT DECK MODULES</td>
<td></td>
</tr>
<tr>
<td>SET APPROACH/SLEEPER BEAM</td>
<td></td>
</tr>
<tr>
<td>POUR UHPC JOINTS</td>
<td></td>
</tr>
<tr>
<td>POUR UHPC BARRIER CLOSURE</td>
<td></td>
</tr>
<tr>
<td>GRINDING/ACC PAVING</td>
<td></td>
</tr>
<tr>
<td>GUARDRAIL/PAINT/OPEN ROAD</td>
<td></td>
</tr>
</tbody>
</table>

Actual ABC period: October 17 – November 1
Iowa Bridge Farm (Phase 1)

- Column Casting
- Reinforcing Steel Cage Assembly
- Approach Slab Casting
- Modular Deck Casting Area
- Abutment Stem & Wing Casting
Precast Substructure Components Casting (Phase 1)
Superstructure Modules – Structural Steel Assembly (Phase 1)
Superstructure Modules – Deck Forming (Phase 1)
Deck Concrete Placement (Phase 1)
Drilled Shaft Construction
(Phase 1)
Abutment / Wing Erection

- 26 kips
- 93 kips
Pier Details
Pier Connection Details
Column Assembly

52 kips
Bedding and Coupler Grouting
Cap Beam Assembly

168 kips
Modular Superstructure Details

PRECAST SUPERSTRUCTURE MODULES AND BARRIERS
PRECAST SLABS

[Diagram showing modular superstructure details]
Superstructure Module Transport

102-112 kips

69-80 kips
Module Assembly
Module Assembly
Final Module Placement
Precast Approach Slab Details
Flooded Backfill System
Precast Approach Preparation

35 kips
Precast Approach Slab Placement

31-37 kips
UHPC Placement
Completed Bridge
Conclusions

ABC design concept was successfully demonstrated but there were some challenges along the way.

Post construction review identified problem areas, as expected, and provided recommendations for improvements which will be documented in the final report.

As the result of this project (and other past ABC projects), Iowa DOT gained a better understanding of risks and benefits associated with ABC and is developing ABC policy.
Project Website

http://www.iowadot.gov/us6KegCreek/

Questions?