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EXECUTIVE SUMMARY 

Transportation systems management and operations (TSMO) is at a critical point in its 
development due increased data availability and analytics. New approaches in road weather 
management are bringing together meteorology, traffic management, law enforcement, 
maintenance, and traveler information to support agency decision-making and influence travel 
behavior. Through these operational efforts and private sector innovations, travelers today have 
higher expectations for their travel experience. Travelers now participate in generating and 
validating information, as well as consuming it. This trend will accelerate with deployment of 
connected vehicle (CV) systems. Within this context, the role of prediction and forecasting will 
become more important to travelers’ transportation and activity choices, as well as to agency 
decisions in transportation operations. Freight carriers and logistics providers will also benefit in 
planning routes, times, and delivery schedules. 

Based on these opportunities, the Federal Highway Administration (FHWA) Road Weather 
Management Program (RWMP) has undertaken the investigation, development, and 
demonstration deployment of an Integrated Modeling for Road Condition Prediction (IMRCP) 
system. Phase 1 of IMRCP developed the foundational concept of operations and system 
requirements. The model envisioned is a practical tool that State departments of transportation 
(DOT) can use to support traveler advisories, as well as maintenance and operational decisions at 
both strategic and tactical levels. The IMRCP phase 2 work specified, implemented, tested, and 
evaluated the IMRCP concept in a demonstration deployment. The concept was vetted with a 
broad stakeholder group and then developed in a straightforward systems engineering process 
that continued to incorporate stakeholder feedback at key intervals. Working with local and State 
agencies, the demonstration system was deployed in part of the Kansas City metropolitan area. 
Performance of IMRCP models and interfaces was evaluated by the research team over a 4-
month period of operations in late 2017 with the KC Scout (KC Scout) traffic management 
center (TMC). 

IMRCP phase 3 builds on the prior work to investigate operations applications. The objectives of 
phase 3 are to: 

• Redeploy the phase 2 model over the same area in Kansas City;  
• Increase the geographical coverage to all Kansas City metropolitan area highways in the 

KC Scout areas of operation;  
• Add an additional traffic model;  
• Run the system for two winter seasons; 
• Evaluate the system results;  
• Update the system documentation.  

The expanded deployment operated for 18 months with enhancements throughout the period. 
IMRCP system operations and the operations response with KC Scout were independently 
evaluated by team members not involved in the development of the IMRPC system. 

IMRCP provides an interactive map and flexible reporting tools to meet its goal of providing 
information on predicted road conditions in support of transportation operations. The data that 
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populate these user interface features are kept in a data store that contains both collected data and 
data generated through forecasting components. IMRCP generates forecasts for traffic and road 
weather conditions and obtains forecasts from sources outside the system for atmospheric 
weather, hydrology, work zone plans, and known special events. Current traffic and incident 
conditions come from the KC Scout advanced transportation management system (ATMS). 
Current environmental conditions are collected primarily from the National Weather Service 
(NWS) and other government agencies.  

The IMRCP system forecasts traffic and road weather conditions using current and forecasted 
atmospheric and hydrologic condition data from the data store, collected from the sources 
previously described. The Traffic Estimation and Prediction System (TrEPS) model estimates 
and predicts the traffic demand and network states at the zone-to-zone (origin-destination) level. 
The machine learning-based prediction (MLP) package predicts traffic network conditions based 
on a given set of system variables, including weather, work zones, incidents, and special events. 
The Model of the Environment and Temperature of Roads (METRo) model estimates and 
predicts pavement conditions on roadways within the network of interest.  

An evaluation of the IMRCP demonstration deployment was conducted  by research team 
members with the staff of the KC Scout TMC. The evaluation explored what impact IMRCP had 
on KC Scout operations and assessed if the information was useful to the KC Scout 
operators/supervisors. The key questions guiding the evaluation data collection and analyses 
were: (1) Did IMRCP have an operational impact? and (2) Did the users consider IMRCP 
information useful? The analyses of IMRCP speeds data and operator/supervisor interviews 
provided insight into the actual and perceived operational impact and usefulness. The evaluation 
also provided perspectives on the accuracies of the traffic models relative to data provided by the 
KC Scout traffic management system. 

The enhancements made to expand the regional view and traffic modeling capabilities have been 
integrated successfully into the system. The demonstration deployment provides real-time 
predictions of traffic and road conditions over the entire Kansas City metro area, which  
incorporate data on atmospheric and road weather conditions, traffic, incidents, hydrological 
conditions, work zones, winter maintenance operations, and special events, when such data are 
available. The predictions are available to system users, operators, and maintainers in user-
friendly maps and reports. The underlying IMRCP system provides a scalable framework for 
deployment in other areas, is extensible to other types and sources of data, and can support 
additional application-specific user interfaces, as needed. 

Lessons learned, deployment experience, potential applications, and conclusions from the 
IMRCP phase 3 deployment have identified both gaps and barriers to further deployments. Gaps 
discussed in this report are primarily technical, but barriers may be limited acceptance with 
operators and maintainers, ease of deployment, or operational benefits. The research team’s 
recommendations for further study are therefore intended to close gaps, reduce barriers, and 
develop new opportunities for applying predictive capabilities in solving transportation 
operations challenges. Key recommendations include automating the configuration processes for 
new deployments, improving data acquisition, adding quality checking to feed the prediction 
models, tightening the integration of hydrological models, and providing actionable 
recommendations for management strategies in response to weather and traffic predictions.
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CHAPTER 1. INTRODUCTION 

BACKGROUND 

Transportation systems management and operations (TSMO) is at a critical point in its 
development due to increased data availability and analytics. New approaches in road weather 
management are bringing together meteorology, traffic management, law enforcement, 
maintenance, and traveler information to support agency decision-making and influence travel 
behavior. Through these operational efforts and private-sector innovations, travelers today have 
higher expectations for their travel experience. Travelers now participate in generating and 
validating information as well as consuming it. This trend will accelerate with deployment of 
connected vehicle (CV) systems. Within this context, the role of prediction and forecasting will 
become more important to the travel and activity choices made by travelers, as well as to agency 
decisions in transportation operations. Freight carriers and logistics providers will also benefit in 
planning routes, times, and delivery schedules. 

Development and adoption of traffic prediction approaches by operating agencies have been 
limited, however, even with a growing body of research. While this is partly attributable to 
limited data, available predictive tools have been narrowly focused and have not taken full 
advantage of developments in related disciplines and domains. As a result, the use of predictive 
methods in support of operational decisions continues to be limited. 

Recent efforts to incorporate forecasted weather conditions into traffic predictions have shown 
considerable promise. Factoring in reported conditions from environmental sensor stations, 
vehicle fleets, and citizen-reported conditions could improve estimation of the current system 
state from which predictions are developed. The utility of traffic predictions could be further 
enhanced by augmenting the forecast weather conditions with known and likely capacity 
constraints, such as work zones and incidents. Current and planned road treatment approaches, 
snowplow routing, parking restrictions, and maintenance decisions could be included as well. 

Based on these opportunities, the Federal Highway Administration Road Weather Management 
Program (RWMP) has undertaken the investigation, development, and demonstration 
deployment of an Integrated Modeling for Road Condition Prediction (IMRCP) system. This 
effort has included a survey of available and imminent weather, hydrological, traffic, and related 
transportation management models; development of a concept of operations and fundamental 
system requirements; development of a system architecture and system design; implementation 
of a foundational system; and deployment of the system with an operating transportation agency 
to evaluate its effectiveness. Research, development, and operations stakeholders have been 
involved in every part of the IMRCP effort. 

Phase 1 of the IMRCP initiative developed the foundational concept of operations and 
requirements. The model envisioned therein is a practical tool that State departments of 
transportation (DOT) can use to support traveler advisories and maintenance and operational 
decisions at both strategic and tactical levels. The IMRCP phase 2 work specified, implemented, 
tested, and evaluated the IMRCP concept in a demonstration. The concept was vetted with a 
broad stakeholder group and then developed in a straightforward systems engineering process 
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that continued to incorporate stakeholder feedback at key intervals. Working with local and State 
agencies, the demonstration system was deployed in part of the Kansas City metropolitan area. 
Performance of IMRCP models and interfaces was evaluated over a 4-month period of 
operations in late 2017 with the Kansas City Scout (KC Scout) traffic management center 
(TMC). 

IMRCP phase 3 builds on the prior work to investigate operations applications. The objectives of 
phase 3 are to redeploy the phase 2 model over the same area in Kansas City, increase the 
geographical coverage to all Kansas City metropolitan area highways in the KC Scout areas of 
operation, add an additional traffic model, run the system for two winter seasons, evaluate the 
system results, and update the system documentation. The expanded deployment operated for 18 
months with enhancements throughout the period. IMRCP system operations and the operations 
response with KC Scout were independently evaluated. 

PURPOSE 

The purpose of the IMRCP is to integrate weather, traffic, and other operations data sources with 
analytical methods to effectively predict road and travel conditions. Identification of system 
functions and interfaces is driven by stakeholders in TSMO who also provide feedback on the 
usefulness of model results. The model could ultimately become a practical tool for 
transportation agencies to support traveler advisories, maintenance plans, and operational 
decisions at both strategic and tactical levels.  

This project report describes the phase 3 development, demonstration, evaluation, and 
assessment of the IMRCP. It provides a summary description of the system design, the study 
area deployment and engagement, operations experience, and evaluation. 

SCOPE 

The IMRCP provides a framework for the integration of road condition monitoring and forecast 
data to support tactical and strategic decisions by travelers, transportation operators, and 
maintenance providers. The system:  

• Collects and integrates environmental observations and transportation operations data.  
• Collects forecast environmental and operations data when available. 
• Initiates road weather and traffic forecasts based on the collected data.  
• Generates travel and operational advisories and warnings from the collected real-time and 

forecast data. 
• Provides the road condition data, forecasts, advisories, and warnings to other applications 

and systems.  
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Road condition and operations data and forecasts integrated into the prediction, as available, 
include:  

• Atmospheric weather.  
• Road (surface) weather.  
• Small stream, river, and coastal water levels.  
• Road network capacity. 
• Road network demand. 
• Traffic conditions and forecasts. 
• Traffic control states. 
• Work zones.  
• Maintenance activities and plans. 
• Emergency preparedness and operations. 

DOCUMENT OVERVIEW 

Chapter 1 provides an overview of the background, purpose, and scope of the project and this 
document. 

Chapter 2 describes the overall IMRCP project, including the methodology and approach, 
project tasks and deliverables, and stakeholder engagement. 

Chapter 3 describes the process of implementing and deploying IMRCP, including the vision 
and objectives, user needs, application scenarios, system description, study area description and 
modeling, traffic model calibration, system deployment and operations, and open-source work 
product. 

Chapter 4 describes the evaluation of the IMRCP project. 

Chapter 5 describes the end results of phase 3 of the IMRCP. This section includes case studies 
and applications; lessons learned and limitations; and deployment considerations, conclusions, 
and recommendations for further study. 
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CHAPTER 2. PROJECT DESCRIPTION 

The multidisciplinary nature of transportation systems management and operations (TSMO) can 
be exemplified in road weather-responsive management strategies (WRMS) that bring together 
meteorology, traffic management, law enforcement, maintenance, and traveler information to 
support agency decision-making and influence travel behavior. Similar needs are present in work 
zone management, traffic incident management, and active traffic management strategies. All of 
these strategies seek to provide actionable information to travelers, enabling them to make better 
choices for safe and reliable travel, and to agencies, enabling them to minimize and mitigate the 
impact of disruptions. Initiatives across all of these disciplines have been working toward 
developing similar frameworks and methodologies. 

Travelers today have higher expectations for their travel experiences because of these 
management strategies and private-sector innovations in gathering, processing, and 
disseminating of information. Travelers have moved from being passive consumers of 
information with unknown accuracy to being vital players in generating and validating 
information. This trend will accelerate with deployment of connected vehicle systems, which 
will create a powerful new platform for collecting and sharing information. Within this context, 
the role of prediction and forecasting will become more important to choices made by travelers, 
as well as to agency decisions in the active management of surface transportation operations. 
Economic imperatives require freight carriers and logistics providers to factor in a variety of 
traffic conditions for planning routes, times, and delivery schedules.  

While a wide variety of approaches have been proposed in the scientific literature for predicting 
traffic conditions, the development, application, and adoption of these approaches by operating 
agencies have been limited. Part of the reason has been limited data availability, a situation that 
is changing rapidly. Another reason is that available tools have been too narrowly focused and 
have not taken full advantage of developments in related disciplines and domains. As a result, 
the use of predictive strategies in TSMO remains nascent, and decisions continue to largely be 
reactive.  

To support proactive operations, higher-quality predictions are needed for incorporating factors 
beyond the fundamental traffic models into the analysis. Previous efforts incorporating forecast 
weather conditions in traffic predictions1 have shown considerable promise in improving the 
relevance and usefulness of traffic predictions for agency decision-making related to incoming 
weather. However, the richness and usefulness of traffic predictions can be enhanced by 
augmenting the forecast weather condition during the prediction window with known and likely 
capacity constraints (such as planned work zones or snow route restrictions or incidents). 
Incorporating reported conditions from environmental sensor stations (ESS), mobile observations 
from fleets, and citizen reports may further improve the predictions. Current and planned road 
treatment approaches, snowplow routing, parking restrictions, and maintenance decisions might 
be factored in as well.  

                                                            
1 Federal Highway Administration, Implementation of a Weather Responsive Traffic Estimation and Prediction 

System (TrEPS) for Signal Timing at Utah DOT, FHWA-JPO-14-140 (Washington, DC: U.S. Department of 
Transportation [USDOT], 2014), https://rosap.ntl.bts.gov/view/dot/3442. 

https://rosap.ntl.bts.gov/view/dot/3442
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Phase 3 of the Integrated Modeling for Road Condition Prediction (IMRCP) demonstration 
project has provided an opportunity to develop, deploy, and evaluate an integrated model for 
predicting road conditions that incorporates transportation and non-transportation data, 
deterministic and probabilistic data, and measured and reported data into a framework for agency 
decision-making and traveler information. The model provides a practical tool for transportation 
agencies to support traveler advisories and maintenance and operational decisions at both 
strategic and tactical levels.  

METHODOLOGY AND APPROACH 

One of the main challenges in deploying an integrated prediction model is accounting for the 
different latencies, qualities, and levels of certainty in source data and methods to generate 
consistent, accurate, and useful results. For example, in the Utah Department of Transportation 
(UDOT), citizen and maintenance personnel reports of road conditions are subjectively weighted 
in decision-making based on the timing of the report and nature of the decision. The in-house 
meteorologists weigh all observed conditions along with ensemble weather forecasts to make a 
call on the road condition forecast.2 Creating methods and a framework to accommodate those 
considerations is a significant undertaking.  

The model also needs to translate road-segment-based information into meaningful and 
actionable information within a corridor and across the network. This is where it is critical to 
understand the impact of road conditions on traffic. Being able to translate road weather 
conditions into traffic impacts can inform the route, mode, and time choices of travelers. This 
also calls for integrating recent developments in using probabilistic information and forecasts in 
decision-making processes as new information becomes available. For example, optimal routing 
for both individuals and service vehicles (package delivery, repair vehicles, etc.) requires 
different algorithms than are typically used in deterministic conditions. 

The recommendations from predictive models need to be conveyed in simple, understandable 
terms to the end user and enable querying the system for additional information. For example, 
using probabilistic models may entail communicating probabilities to the traveler, a concept 
traditionally avoided by departments of transportation but commonly employed in meteorology. 

The products of the phase 3 project are the IMRCP system software and documentation, a 
demonstration, an evaluation of the demonstration, and an analysis of the experience. To 
facilitate use by State and local transportation agencies, including those involved in the 
demonstration, the model has had to be easy to use, rely on available data sources, integrate with 
existing legacy systems, generate timely predictions, and ultimately provide decision support to 
operators in a useful manner. 

PROJECT TASKS AND DELIVERABLES 

Phase 1 identified user needs and set broad requirements for a demonstration of IMRCP 
capability. It surveyed the existing field of predictive models, engaged a broad stakeholder 
community, and developed a concept of operations and requirements for an integrated model for 
                                                            

2 FHWA, Connected Vehicle-Enabled Weather-Responsive Traffic Management Final Report, FHWA-JPO-18-
648 (Washington, DC: USDOT, April 2018), 23–24. 



9 
 

predicting road conditions that incorporates transportation and non-transportation data, 
deterministic and probabilistic data, and measured and reported data. 

Phase 2 started with follow-on efforts to develop a system architecture and design with input 
from the IMRCP project stakeholders. A foundational system was then implemented and 
deployed in a suburban Kansas City study area in cooperation with the Kansas City Scout (KC 
Scout) transportation management center (TMC), which is operated cooperatively by the 
Missouri Department of Transportation (MODOT) and the Kansas Department of Transportation 
(KDOT). The effectiveness of the system’s ability to incorporate real-time and archived data and 
results from an ensemble of forecast and probabilistic models to predict the current and future 
overall road/travel conditions was then evaluated.  

Phase 3 builds on the prior work to more deeply investigate operations applications. The Kansas 
City study area was expanded from the congested commuting corridor used in phase 2 to include 
the entire metropolitan area monitored by the KC Scout TMC. The Traffic Estimation and 
Prediction System (TrEPS) dynamic traffic assignment (DTA) model deployed in phase 2 was 
enhanced with additional scenario management and calibrations. An alternative machine 
learning-based prediction (MLP) for traffic forecasting was added, based on several years of 
detailed traffic data from the TMC and other sources. System documentation was updated to 
reflect the enhancements and respond to prior user feedback, then reposted with the system code 
to the U.S. Department of Transportation’s (USDOT) open-source application development 
portal on GitHub.3 The system was operated for 18 months through two winter seasons, during 
which the system was enhanced to address operational challenges as they occurred. A formal 
evaluation was undertaken to identify achievements and challenges in system operations and in 
the operations response at KC Scout.  

Taken together, phase 3 activities have formalized many of the modeling techniques, built 
operational experience with the IMRCP, and provided a more thorough understanding of the 
opportunities and limitations associated with the integrated model. 

Phase 3 began with a review of documentation from the prior phases to uncover any gaps 
between the documentation and the deployed system capabilities. The review also identified 
opportunities for system and documentation improvements in the phase 3 development and 
deployment. 

The IMRCP stakeholder engagement plan was updated in phase 3 to reflect the expansion plan 
and focus on operational rather than developmental activities. The engagement plan identified 
the stakeholders, schedule for engagement, webinar formats and approach, and main outcomes 
expected from each engagement with the group. The plan was used to guide stakeholder 
interactions throughout the project life cycle. 

The system architecture and design description were updated in phase 3 to reflect the 
enhancement of the TrEPS model, addition of the MLP traffic forecast, and accommodations for 
expansion of the roadway network model. The map interface was significantly upgraded to 
improve performance and reliability when looking at broader views of the metro, regional, and 
                                                            

3 “OSADP/IMRCP” application development portal, GitHub, accessed April 1, 2020, 
https://github.com/OSADP/IMRCP. 

https://github.com/OSADP/IMRCP
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national weather conditions. Descriptions of each of these efforts are provided later in the 
document. 

Deployment of the upgraded phase 3 IMRCP system required significant expansion of the 
roadway network configuration and data collectors. The study area expanded from a significant 
high-congestion corridor to the entire metro area monitored by the KC Scout TMC. Traffic and 
weather data for the entire metro area over several years were compiled and used in the training 
and calibration of the MLP traffic model. The system acceptance test plan was updated and 
executed against the expanded and completed system. 

An evaluation of the IMRCP system and its use were conducted as part of the phase 3 
deployment. The purpose of the evaluation was to explore what impact IMRCP had on KC Scout 
operations and assess whether or not the information was useful to the KC Scout operators and 
supervisors. The findings from the evaluation could be used to inform others who may be 
considering similar deployments, and provide the Federal Highway Administration with 
information to help determine next steps for IMRCP.  

STAKEHOLDER ENGAGEMENT 

Stakeholder involvement in the IMRCP project was needed to understand user needs and 
potential modeling and data constraints. Meteorologists helped in understanding forecast models 
and ensemble methods. Traffic researchers and modelers assisted in understanding current and 
emerging models and predictive capabilities. DOT maintenance workers and DOT traffic 
operations personnel were needed for gathering user needs, including use of modeling and 
prediction in operational decision-making. Third-party information provider and traveler needs 
were collected from DOT traveler information managers. 

Staff at KC Scout TMC, Missouri Department of Transportation (MODOT), and Kansas 
Department of Transportation (KDOT) have been particularly supportive of the demonstration 
study area deployment in the Kansas City metropolitan area. They have participated in 
stakeholder engagement and activities with other IMRCP stakeholders, supported the 
development team with data and access to their transportation management systems, used the 
demonstration IMRCP alongside their TMC systems, and provided input to the evaluation.  

Specific stakeholder meetings and webinars included:  

• Presentation to ITS Heartland Annual Meeting – April 24, 2018. 
o ITS Heartland is the regional ITS America association including MODOT, KDOT, 

and three other States. The presentation provided an opportunity to describe the 
IMRCP efforts with KC Scout to a broader set of WRMS stakeholders. 

• Stakeholder core working group kickoff – July 12, 2018. 
o Stakeholders were introduced to the phase 3 IMRCP project, scope, and objectives. 

The deployed and operating phase 2 system was demonstrated as a basis for soliciting 
input on opportunities for enhancement in phase 3. Stakeholder participation 
opportunities were also described.  
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• IMRCP phase 3 MODOT update – August 17, 2018. 
o An update and demonstration were provided to KC Scout and MODOT personnel to 

solicit renewed operations interest for the phase 3 enhancements. 

• National Operations Center of Excellence (NOCoE) webinar – August 30, 2018. 
o An introductory presentation and demonstration were provided through a NOCoE 

webinar to a national audience interested in TSMO. 

• Road Weather Management Program (RWMP) Stakeholder Meeting – September 18, 
2018. 
o The project objectives, phase 2 system deployment and accomplishment, and phase 3 

plans were presented with KC Scout to attendees at the RWMP meeting. 
Demonstrations were available to attendees in the technology vendor area. 

• Stakeholder update – January 31, 2019. 
o The phase 3 objectives and progress were described with a system demonstration for 

a broad audience of interested stakeholders. 

• Presentation to ITS Heartland Annual Meeting – April 30, 2019. 
o An update on the Kansas City model deployment was provided to the ITS Heartland 

Annual Meeting. Results from the 2018–2019 winter season of operations were 
summarized.  

• Stakeholder core working group update – June 27, 2019. 
o An update on the Kansas City model deployment was provided to the IMRCP core 

working group. Results from the 2018–2019 winter season of operations were 
summarized and plans for the evaluation and next season of operations were 
provided. 

• Stakeholder core working group update – August 21, 2019. 
o The project team met with the core working group to discuss the KC Scout operating 

experience, evaluation, broader potential applications for WRMS, and the upcoming 
season. 

• RWMP Stakeholder Meeting – August 29, 2019. 
o Phase 3 objectives and results were presented to RWMP meeting attendees by the KC 

Scout representative. Demonstrations were available to attendees in the technology 
vendor area. 
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CHAPTER 3. IMPLEMENTATION AND DEPLOYMENT 

Development of Integrated Modeling for Road Condition Prediction (IMRCP) capabilities 
presents diverse challenges. The interdisciplinary nature of the concept necessitates a broad 
group of stakeholders with particular operational needs, leading to an equally broad set of 
application scenarios. The variety of data types needed to support the scenarios requires 
identifying, accessing, and developing components for data collection from a wide variety of 
sources. The spectrum of data conditions, quality, and attributes across those sources then 
requires a flexible and extendable data repository and data processing capability to synthesize the 
input needed by all of the component forecast methods. The system and user interfaces should be 
able to represent the original data and forecast results in consistent, easy-to-use presentations that 
provide user-selectable geographical and past-present-future views. 

As noted in the project description, previous phases of IMRCP have provided thorough analyses 
of the existing state of predictive methods in meteorology, traffic, hydrology, and operations 
planning. At the end of IMRCP phase 2, a prototype system integrating the data sources and 
methods needed to create predictions of system conditions was modeling part of the Kansas City 
metropolitan area and providing data to the Kansas City Scout transportation management center 
for evaluation. That deployment suggested certain enhanced capabilities that could improve the 
forecast results and user interfaces for operations and assessment. The resulting phase 3 
deployment is described in this section. 

USER NEEDS 

User needs for IMRCP were thoroughly described in the phase 1 analysis and concept of 
operations. Potential users of the IMRCP range from travelers to transportation operators to 
maintenance managers to consulting meteorologists to emergency planners. The breadth of 
interested stakeholders prefigures the wide range of functions to be required of the IMRCP. 

Users need information to help them make appropriate travel and traffic management decisions. 
Too much information outside a user’s context, however, may distract the user from more 
immediate and relevant information. Potential road condition predictions are useful only if they 
are relevant to the traveler’s temporal and spatial context. This has significant ramifications for 
predictive capabilities. Traffic information provided to managers and travelers has, to this point, 
been limited to observed conditions, but predictions have more dramatic decision implications. 
Information must be timely enough to facilitate effective decisions based on anticipated 
conditions. Telling someone in the middle of a 1-hour (h) commute that severe congestion is 
likely for the next 30 minutes (min) is much less effective than having issued the advisory 90 
min earlier. 

Users need to have road condition predictions expressed in clear terms consistent with other 
similar contexts that help their decision-making processes. Traffic information and signage 
already provides some information of this type; travelers understand what an icy road ahead or a 
deer crossing sign means. These signs are used to express likelihood and provide an advisory 
appropriate to the traveler’s immediate decision context. Predictive capabilities expand this 
concept to more specific times and conditions.  
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User needs for decision support are not, however, directly changed by the availability of road 
condition predictions. A traveler, for example, might look for routing information in travel 
planning. Road condition predictions are an input to this information, not the reason for initially 
seeking it. As such, the users of the predictions are, in this case, the routing system rather than 
the end user. The road weather maintenance decision support system (MDSS) demonstrates this 
in practice; the precipitation and icing forecasts are embedded in the analysis of decision-support 
planning. 

APPLICATION SCENARIOS 

The potential users of IMRCP face diverse challenges related to traffic, weather, and hydrology. 
The IMRCP system functions can conceptually assist users in meeting these challenges. 

Variable Speed Limits 

Transportation systems management and operations (TSMO) practitioners could use IMRCP to 
be proactive rather than reactive. Dynamic or variable speed limits (VSL) can enhance network 
performance during peak demand periods when congestion and delay are often exacerbated by 
adverse weather, reduce traffic shock waves and incidents, and delay or prevent flow breakdown, 
and thus maintain optimal throughput. The posted speed limit, which could also consider 
visibility, friction, and traffic conditions, may be adjusted based on a combination of prevailing 
and predicted weather conditions. 

Enhanced Traveler Information 

Road weather information, such as in-route weather warning and route conditions, can be 
disseminated through radio, Internet, mobile devices, roadside dynamic message signs (DMS), 
and other similar means. Travel time predictions for alternative routes and times would enable 
users to select the best route and departure time for their particular travel need, including the 
impact of work zones or inclement weather. Travelers could therefore choose their departure 
time and/or route based on the predictive information.  

Enhanced Intelligent Signal Controls 

IMRCP integrates weather forecasts with traffic predictions. The results could form a basis for 
selecting traffic signal control interventions systematically. To achieve this, the signal control 
interventions would be linked to the predicted weather and traffic conditions based on measured 
conditions. Real-time traffic data feeds are used as a basis for the traffic state estimation and 
prediction within the IMRCP and could be obtained directly from signal control sensors in a 
corridor. 

Maintenance  

IMRCP enhances the ability to support strategic and tactical maintenance decisions at an agency. 
The IMRCP could complement the current use of MDSS at an agency by integrating traffic and 
roadway characteristics into a single predictive view of conditions. Using this integrated forecast 
enables agencies to make better decisions relating to winter maintenance. Similarly, IMRCP 
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would provide non-winter maintenance personnel the capability to include weather and traffic 
forecasting in day-to-day decisions on maintenance scheduling. 

Freight 

IMRCP capabilities can help freight managers, dispatchers, and operators/contractors make 
better decisions in pursuit of higher customer satisfaction, at an overall lower cost. Once a truck 
is on the road for a long-haul move, whether for a truckload delivery or as part of a less-than-
truckload (LTL) network move, predictive IMRCP information could help drivers select routes 
that best meet their travel time and travel time reliability objectives. Better route planning with 
IMRCP could then improve load planning by operators. This scenario, however, would require 
IMRCP to be deployed over an area consistent with the desired route planning. 

Work Zones 

For work zone personnel, IMRCP provides segment-level alerts for monitoring work zones. The 
tool complements the ability of smart work zones and work zone intelligent transportation 
systems (ITS) to provide more actionable information to travelers. Potential scenarios include 
near-term work zone support and coordination, where the work zone impact can be assessed 
using current conditions and imminent operations plans. 

Travelers  

As end-user beneficiaries of IMRCP, commuters will have access to forecasts of traffic 
conditions that parallel their access to weather forecasts. Commuters will also have access to 
predicted conditions resulting from planned (forecast) work zones, special events, or localized 
flooding.  

IMRCP applications could enable tourists to plan long trips on unfamiliar roadway networks. 
Tourists would have access to traffic forecasting services in IMRCP that provide data for the 
entire trip planning horizon, predicting likely conditions using archived and real-time traffic 
conditions, and atmospheric and road weather forecast conditions. As in the freight scenario, this 
would require IMRCP to be deployed over an area consistent with the desired route planning. 

Emergency Response 

Just as IMRCP can facilitate predictive route planning for freight and individual travelers, it 
could also assist emergency response planning for either responders or evacuees. The model’s 
predictions of traffic and roadway conditions, in consideration of weather and hydrology, could 
improve safety and mobility during incidents and, depending on severity, extreme weather 
events. 

SYSTEM DESCRIPTION 

Because the purpose of IMRCP is to provide information on predicted road conditions, the user 
interface is essential to providing that view. IMRCP provides flexible reporting tools and an 
interactive map to meet that need. The data that populate these user interface features are kept in 
a data store that contains collected data and data generated through forecasting components. 
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Forecast data are generated within the IMRCP context for traffic and road weather conditions 
and are obtained from sources outside the system for atmospheric weather, hydrology, work zone 
plans, and known special events. Current traffic and incident conditions come from the KC Scout 
advanced transportation management system (ATMS). Current environmental conditions are 
collected primarily from the National Weather Service (NWS) and other government agencies. 
The major system components and interfaces are illustrated in figure 1. 

 

AHPS = Advanced Hydrologic Prediction Service. IMRCP = Integrated Modeling for Road Condition 
Prediction. KC = Kansas City. MARC = Mid-America Regional Council. MLP = machine learning-based 
prediction. NDFD = National Digital Forecast Database. NWS = National Weather Service. RAP = Rapid 
Refresh. RDBMS = Relational Database Management System. RTMA = Real-Time Mesoscale Analysis. 
RWIS = road weather information system. TrEPS = Traffic Estimation and Prediction System. 
Source: Federal Highway Administration 

Figure 1. Diagram. Components of the Integrated Modeling for Road Condition Prediction. 

Data Collection 

The integration of diverse sets of data requires a diverse set of data collectors. Traffic, 
hydrology, and weather data relevant to a deployment area are collected from numerous sources.  

Current air temperature, wind speed, surface pressure, and humidity observations are collected 
from the National Oceanic and Atmospheric Administration (NOAA) National Centers for 
Environmental Research (NCEP) Real-Time Mesoscale Analysis (RTMA). These weather 
observations are used as input to the traffic model for generating traffic predictions and to the 
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road weather model for road weather predictions. They can be viewed on the map or through 
reports. 

Atmospheric weather forecasts are collected from the NOAA NWS National Digital Forecast 
Database (NDFD). These forecasts are displayed on the user interface through the reporting and 
subscription features. They are also used in traffic and road weather predictions. 

The NOAA/NCEP Rapid Refresh (RAP) is used as the source for forecast surface pressure, 
precipitation amount, and precipitation type. Forecast weather data are used for traffic and road 
weather predictions and providing information to users. 

The NOAA National Severe Storms Laboratory (NSSL) Multiple Radar/Multiple Sensor System 
(MRMS) provides radar and precipitation rate and type observations for IMRCP. These weather 
data can be viewed on the map or through reports and are used as input for the traffic model and 
road weather prediction model. 

Current hydrological conditions and forecasts are collected from the NOAA/NWS Advanced 
Hydrologic Prediction Service (AHPS) when new data become available at any of the AHPS 
stations in the study area. The values are used to determine the flood depth on road network links 
based on inundation mapping provided by AHPS. Additional hydrological conditions and 
forecasts for small streams can also be collected from other sources, when available. 

The current pavement and subsurface temperatures can be collected from a road weather 
information system (RWIS) station or the Federal Highway Administration’s Weather Data 
Environment (WxDE) for use in road weather predictions. These values are used in initiating 
road state and road temperature predictions with the Model of the Environment and Temperature 
of Roads (METRo).  

Alerts, watches, and warnings are collected from NWS using the Common Alerting Protocol 
(CAP) and are available for IMRCP users to view.  

Current traffic conditions are collected from traffic detectors maintained by the road network 
infrastructure owner/operator (in this case, KC Scout for the metro area highway network). 
Speed, volume, and occupancy data from these detectors are provided by an ATMS to the 
IMRCP system for predicting traffic across the network.  

Incident and work zone data are also collected from an ATMS (again, KC Scout in this case). 
The location, estimated time frame, lane closures, and type of event are used to feed the traffic 
model for predictions and to display on the map. 

Forecast Model Components 

IMRCP forecasts traffic and road weather conditions using current and forecast atmospheric and 
hydrologic condition data from the data store, collected from the sources previously described. 

The Traffic Estimation and Prediction System (TrEPS) model estimates and predicts the traffic 
demand and network states at the zone-to-zone (origin-destination) level. After an appropriate 
offline calibration based on traffic data archives for the network of interest, the TrEPS online 
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component is capable of continuously interacting with multiple sources of current real-time 
traffic data, such as from loop detectors, roadside sensors, and vehicle probes, which it integrates 
with its own model-based representation of the network traffic state. TrEPS also considers and 
integrates current road weather conditions, incident status, and work zone plans into its 
estimation and prediction of network link speed, volume, occupancy, and travel times. For this 
IMRCP integration, detector, incident, work zone, and weather data input are provided from the 
core IMRCP data store. 

The machine learning-based prediction (MLP) package predicts traffic network conditions given 
a set of system variables that include weather, work zones, incidents, and special events. MLP is 
a comprehensive, data-driven prediction module that uses a Markov process to explicitly 
characterize the probabilistic transition between traffic states under different external conditions 
(e.g., weather, incidents). For road network links without real-time traffic detectors, a neural 
network model is used for predictions if a detector can be matched within 5 miles downstream, 
and historical INRIX® data are used when no detector can be found downstream. 

The METRo model estimates and predicts weather-related pavement conditions on roadways 
within the network of interest. The model computes pavement temperatures and surface 
conditions on network pavement segments and bridges using current condition data from RWIS 
and mobile sensors (when available), atmospheric weather forecasts, and pavement configuration 
data. 

Data Store 

All data collected and computed by the system are kept in its integrated data store. Data collected 
by the system directly from external sources are kept in their original formats. Data generated by 
the system in data digest and forecasting components are stored in compatible file structures. All 
data kept by the system are indexed to location and temporal contexts. All other system 
components work from data within the store for forecasting, presentation, and reporting. The 
data store was enhanced in phase 3 to provide faster access to large data sets in support of 
broader geographical views. 

User Interface 

The IMRCP user interface provides forecast traffic and road weather conditions on maps, on-
demand reports, and in subscriptions. The map interface can be used to view conditions on 
roadways, over regions of a deployment area for alerts, in combinations. As a live system, the 
map can be set to view a single point in time or to automatically refresh as new data become 
available. Notifications of current events and predicted conditions can be pushed to the user view 
over the map. Time controls on the map enable users to view forecasted and recent past 
conditions or to access archives and replay past events. Reports can be created from the map 
view and retrieved when complete.  

The map interface has been substantially enhanced for phase 3 based on user evaluations. The 
desire to see larger geographical views led to more sophisticated rendering, storage, and 
presentation of the area (weather) layer data on the maps. The location of map view controls and 
legends was also updated from the phase 2 system with more display options and overlays. 
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A complete description of the system features and user interface is provided in the Integrated 
Modeling for Road Condition Prediction System User Guide.4 Figure 2 shows the user interface 
features depicting traffic conditions across the demonstration area with mixed winter 
precipitation.  

 
Source: Federal Highway Administration 

Figure 2. Screenshot. User interface of an example map in the Integrated Modeling for 
Road Condition Prediction system. 

STUDY AREA DESCRIPTION AND MODELING 

The IMRCP phase 2 study area was selected from among several candidate locations in the 
United States to demonstrate a broad range of capabilities. The Kansas City region is subject to 
highly variable weather conditions, typical urban congestion patterns, and interesting 
hydrological characteristics. The specific study area within the metro area was chosen based on a 
combination of characteristics, including congested traffic, alternative routes, weather sensors, 
and hydrologically challenging areas (several streams are subject to severe flooding within the 
study area). A planning model for the city, available from the Mid-America Regional Council 

                                                            
4 USDOT, Integrated Modeling for Road Condition Prediction System User Guide, FHWA-JPO-18-747 (October 
2019). 



20 
 

(MARC) metropolitan planning organization (MPO), was used as a basis for the phase 2 road 
network model. 

KC Scout operator feedback in phase 2 indicated the IMRCP model needed to cover the entire 
metropolitan area to support TMC-based operations. KC Scout operators are accountable to the 
entire metro area and wanted a view of regional traffic and weather conditions rather than just a 
preselected subnetwork. As shown in figure 3, the IMRCP phase 3 study area greatly extends the 
phase 2 model (shown in red) to include all of the freeways monitored by KC Scout. Traffic 
modeling on the extended freeway network is provided by MLP. The TrEPS dynamic traffic 
assignment (DTA) model continues to be deployed in phase 3 only on the phase 2 freeway and 
arterial network. 

 
Source: Federal Highway Administration; OpenStreetMap® contributors  
Figure 3. Map. Kansas City metropolitan study area of the Integrated Modeling for Road 

Condition Prediction. 

This extension greatly increases the number of data sources for traffic, weather, and hydrology 
data. The phase 3 study area is made up of 5,936 roadway model links, 1,892 nodes, and 928 
bridges. Data in the study area are collected from 205 traffic signals, 670 traffic detectors on the 
mainline freeway links, 332 ramp detectors, 178 StormWatch hydrological observing sites, 25 
AHPS stations, and a NOAA Automated Surface Observing System (ASOS) station. 
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KC Scout is the primary operational stakeholder for the IMRCP demonstration deployment. Staff 
from KC Scout TMC, Missouri Department of Transportation (MODOT), and Kansas 
Department of Transportation (KDOT) supported the modeling effort and provided evaluation 
input for IMRCP after it was deployed. Real-time and archive data for the highway network were 
provided through KC Scout’s TransSuite® data portals. Incident and work zone data were 
collected from KC Scout’s event feed once per min, and traffic detector data consisting of speed, 
volume, and lane occupancy were collected from KC Scout’s detector feed, also once per min.  

Weather and hydrological data for the study area were gathered primarily from the NOAA 
sources described earlier but were supplemented with local sources such as the StormWatch 
system operated by the City of Overland Park, Kansas. Atmospheric weather forecasts are 
updated and retrieved once per hour. Hydrological systems generally update their data feeds only 
when the data change, but the IMRCP is configured to check those feeds at least once every 10 
min to capture potential flash-flooding events. Based on these data availabilities, METRo road 
weather condition forecasts are recomputed once per hour. Weather conditions are provided with 
the 1-min traffic data updates to the TrEPS and MLP traffic models, which then recompute 2-h 
traffic condition forecasts once every 15 min. 

TRAFFIC ESTIMATION AND PREDICTION SYSTEM TRAFFIC MODEL 

Calibration of the TrEPS traffic model is a critical and significant component of the integrated 
model deployment. This section summarizes the results of the model calibration effort. It 
provides a comparison between the model estimation results and the corresponding real-world 
observations.  

Traffic Flow Model 

The primary sources of traffic information were radar-based detectors installed along each of the 
three freeways (i.e., Interstate 435 [I–435], U.S. Route 69 [US–69], and Interstate 49 [I–49]) in 
the TrEPS study area (figure 4). Initial traffic flow model calibration was based on the 2018–
2019 archived detector data provided by KC Scout. Detector-retrieved traffic parameters—
including volume, speed, and occupancy—defined freeway traffic conditions in 1-minintervals. 
The daily 24-h traffic flow demand profile was described in a vector, which included 288 
intervals of 5 min each of flow volume, speed, and occupancy. One-min aggregated values were 
used to estimate link-level speed-density relationships for each available detector.  

Due to reliability, consistency, and availability issues, 69 detectors were adopted for the traffic 
flow model calibration. The archived data used to verify the relationship between speed and 
density consisted of 5- and 1-min aggregated historical detector data collected during 2017. 
Speed-density relationships were calibrated using the time-varying traffic data records: density 
and speed at 5-min measurement intervals. A two-regime traffic flow model form is used for 
traffic flow on freeways, while a single regime model form is used for arterials. Traffic flow 
model parameters include breakpoint density (kbp), speed-intercept (vf), minimum speed (v0), jam 
density (kjam), and the shape parameter (α). 
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Source: Federal Highway Administration; OpenStreetMap® contributors 

Figure 4. Map. Selected detectors for traffic flow model calibration by identifier code. 

Freeway traffic flow models were divided into sections, depending on the freeway type of 
facility (i.e., mainline, on-ramp, off-ramp, or freeway-to-freeway ramp), direction of traffic, and 
free-flow speed characteristics. The calibrated speed-density curves for the network are 
documented in the Integrated Modeling for Road Condition Prediction [Phase 2] Final Report.5 
The graphs therein represent typical example freeway links for which the observations were 
available, grouped by type of section they belong to. 

Weather Adjustment Factors 

Relevant literature findings6,7 have shown that the traffic flow model parameters—the maximum 
service flow rate (qmax), shape parameter (α), and free-flow speed (uf)—are sensitive to both 
rain and snow intensities. As the rain or snow intensity increases, maximum flow rate, speed 
intercept, and free-flow speed are reduced.  

A historical weather data set obtained from KC Scout and NWS sources from May to December, 
2016, provided sufficient detail relative to visibility and precipitation intensity levels for 
calibration. However, since heavy rain and snow conditions appeared very rarely (i.e., were not 
recorded in the archived data set with great enough detail for weather adjustment factors [WAF] 
to be calibrated), the detectors did not provide enough data for traffic flow model calibration for 
heavy rain and snow weather conditions. Lack of adverse weather data within the archived data 
set, particularly a representative number of rain and snow days with associated parameters, 
coupled with the necessity of examining the traffic model’s prediction quality for adverse 
                                                            

5 USDOT, Integrated Modeling for Road Condition Prediction Final Report, FHWA-JPO-18-631 (December 
31, 2017), figure 5 and figure 6. 

6 Ibrahim, A. T., and Hall, F.L. (1994) Effect of Adverse Weather Conditions on Speed-Flow-Occupancy 
Relationships. Transportation Research Record 1457, Washington, D.C., pp. 184–191. 

7 Rakha, H. A., Farzaneh, M., Arafeh, M., and Sterzin. E. (2008). Inclement Weather Impacts on Freeway 
Traffic Stream Behavior. Transportation Research Record: Journal of the Transportation Research Board 2071, 
Washington, D.C., pp. 8–18. 
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weather conditions motivated the use of previously-calibrated WAF from a greater Chicago area 
network.8  

Online Traffic Flow Model Update 

The parameters of the traffic flow models embedded in the TrEPS platform are considered to be 
random variables with probability distribution due to inherent stochasticity of traffic behavior 
associated with flow breakdown during congested periods. This distribution can be shifted by 
external factors such as weather, variable speed limits (VSL), and nearby roadworks. To capture 
this time-variant traffic behavior, TrEPS updates the parameters of the traffic flow models 
online. The update process is initiated by speed deviation between predicted and observed 
detector values, which is continuously monitored in the consistency checking module. If a speed 
deviation on an observed link exceeds a predefined threshold, the traffic flow model assigned to 
the specific link is updated with the most recent detector data extracted from the IMRCP server. 
In adverse weather, the weather-adjusted traffic flow model is updated by adjusting the 
parameters of the base traffic flow model while pre-calibrated WAF remain intact. 

Time-Dependent Origin-Destination Matrix 

Joint estimation of the entire 24-h time-dependent origin-destination (TDOD) demand pattern 
was used in this study. Most previous DTA applications are limited to estimating peak-period 
demands. The 24-h demand was generated by extrapolating the estimated origin-destination 
(OD) demand from the peak period to an overall daily pattern. The static/historical demand 
matrix retrieved from the 2010 MARC transportation planning model, along with time-
dependent traffic counts on selected observation links, was used to develop TDOD matrices over 
the time horizon with a chosen time interval (5 min).  

The static/historical OD demand matrix for the Kansas City subnetwork was retrieved from a 
much larger 2010 MARC transportation planning model, which consisted of 981 zones and was 
developed for a peak period. To estimate the demand, the study area subnetwork (69 zones) 
demand was first extracted and then calibrated based on the detector data available. 

For the OD extraction for the subarea under study, four types of trips relative to the subarea were 
observed: Internal–Internal (I–I), External–Internal (E–I), Internal–External (I–E), and External–
External (E–E). I–I trips could be easily extracted from the original OD matrix. However, the 
effects of E–I and I–E on the subarea network also needed to be considered. To do so, a 
simulation of the entire network in Network EXplorer for Traffic Analysis (NeXTA) had been 
performed to retrieve vehicles’ trajectory, and the number of vehicles entering or exiting the 
subarea had been added to the I–I trips with their corresponding zones. After the procedure was 
completed, total demand for the subarea was 1,438,515 trips per day. 

                                                            
8 FHWA, Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic 

Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs. Calibration 
Report – Chicago, FHWA-JPO-16-381 (Washington, DC: USDOT, October 2016). 
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Offline Calibration of the Origin-Destination Matrix 

The demand extracted in the previous section needed to be calibrated based on the archived 
detector data. This section discusses the detector data, demand calibration, and the results.  

Data Sources 

The time-dependent link counts on selected observation links within the Kansas City phase 2 
network were used with DTA models for calibrating time-dependent OD matrix. The 
characteristics of traffic count data used in this project are shown in Table 1. Out of 148 
detectors available in archive data, 79 were excluded for reasons such as unreliable daily counts, 
inconsistencies in mass balance, or uncharacteristic speed-density relationships. The remaining 
69 detectors were used for offline demand calibration.  

Table 1. Characteristics of traffic count data. 

Facility Type Freeway (Interstate 435, Interstate 49, and  
U.S. Route 69) 

Data Source Kansas City Scout 

Resolution 5 minutes 

Data Contents Flow, speed, occupancy 

Source: Federal Highway Administration 

Demand Calibration 

The demand calibration was based on minimizing the weighted distance between historical OD 
and detectors values, with weights of w and (1–w), respectively. Additionally, time weights and 
links weights were devised to impose more control over time and individual link calibration. 

In each DTA simulation, a number of iterations of the user equilibrium algorithm were applied to 
reach an equilibrium state in the network. Initially, a sensitivity analysis on parameter w was 
conducted to select the optimal weights in the objective function corresponding to the deviation 
from historical demand and link counts. The sensitivity analysis includes two ranges of values 
for parameter w. The first range includes 0.1–0.9, with increments of 0.1, for the deviation from 
historical demand. The second range includes the following values: 0.99, 0.999, and 0.9999. 

Figure 5 shows deviations from observations and the deviation from the target demand under 
different weight selections in the first iteration of the basic solution method. By comparison, w = 
0.9 gives a decent compromise between two deviation terms in the objective function and is 
selected for numerical experiments. The link weights have been carefully selected so the 
simulation better matches the observation. The time weights of the 288 intervals (total of 24 h) of 
demand may vary from period to period. 
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Source: Federal Highway Administration 

Figure 5. Graph. Sensitivity analysis of different weights. 

Calibration Results Evaluation/Validation 

The TDOD estimation was first validated on a link-level basis, and then the overall calibration 
results, including the traffic flow model, WAF, and TDOD, were taken into DYNASMART-X 
and verified by the comparison between simulation data and historical observation data. 

First, the simulated and observed link counts are compared for each link. Simulation results 
based on the estimated time-dependent OD matrix are compared with the actual observations. 
Results showing the 5-min and cumulative vehicle counts for three selected links before and after 
calibration are documented in the Integrated Modeling for Road Condition Prediction [Phase 2] 
Final Report.9 The graphs therein represent typical example freeway links for which the 
observations were available, grouped by type of section they belong to. 

Online Calibration of the Origin-Destination Matrix 

Due to the variety of weather patterns, lack of data, and the time-consuming calibration process, 
it is not feasible to prepare demand input in regard of all possible weather situations. In IMRCP 
phase 3, the research team modified the OD demand estimation/prediction module in TrEPS to 
combine the knowledge learned from correlation analysis between weather factors and observed 
traffic volume into an online demand estimation and prediction framework. Two levels of 
weather-sensitive demand adjustment are considered in this framework: (1) the weather-affected 
demand factors can reflect the network-wide demand reduction into a priori demand, while (2) 
the regional difference of weather impact would be addressed in a demand estimation/prediction 
module that executes zonal demand adjustment based on traffic states discrepancy between link 

                                                            
9 USDOT, Integrated Modeling for Road Condition Prediction Final Report, FHWA-JPO-18-631 (December 31, 
2017), figure 9 and figure 10. 
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traffic measurement and simulated link traffic states. The framework of online traffic demand 
calibration in TrEPS is shown in figure 6. 

 
OD = origin-destination. 
Source: Federal Highway Administration 

Figure 6. Diagram. Framework of online traffic demand calibration in Traffic Estimation 
and Prediction System. 
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MACHINE LEARNING-BASED TRAFFIC PREDICTION  

The MLP package predicts traffic network conditions given a set of system variables including 
weather, work zones, incidents, and special events. MLP is a comprehensive data-driven 
prediction module and considers a Markov process to explicitly characterize the probabilistic 
transition between traffic states under different external conditions (e.g., weather, incidents). It is 
able to accurately capture the recurring and non-recurring traffic congestion. MLP provides a 
reliable prediction of traffic speeds for traffic management centers to efficiently deploy proactive 
traffic management strategies. 

Model 

The MLP package contains three classes: MLP scenario identifier, MLP traffic predictor, and 
MLP update manager.  

The scenario identifier identifies what specific scenario the current traffic condition belongs to 
and then selects/generates corresponding models for traffic state prediction. It contains three 
parts: a traffic state cluster, a Markov model generator, and a decision tree model. All three parts 
use the archived data as input and provide established models for the future use. The traffic state 
cluster defines the traffic states based on the levels of traffic speeds. The Markov model is 
developed based on historical traffic state transitions and is used to explain the stochastic 
evolutions of traffic states for each link. The decision tree model identifies the conditions 
regarding whether a certain external event will influence the traffic condition.  

The traffic predictor predicts likely future network traffic states for a specified prediction horizon 
(such as 15 min, 30 min, 1 h, or 2 h) under specific network external conditions. The traffic 
predictor uses information on current network link traffic states and other system variables, such 
as work zones and incidents, as model inputs to predict future network states. The traffic 
predictor considers different transition probabilities between traffic states under different 
external conditions (e.g., weather, incident) and uses a time series model to account for the latest 
trends and observations from the field. Therefore, it is able to accurately predict traffic state 
evolution under different external conditions and can adjust the prediction based on real-time 
field observations. 

The update manager is built as a part of the prediction process that maintains and updates the 
latest MLP parameters. The purpose of the online update is to use both the empirical and real-
time distribution of travel speed/time for different traffic conditions to enhance prediction 
accuracy and robustness. The update manager has two tasks. First, it updates the distribution of 
key traffic variables using the updated data store (e.g., traffic speed, volume) and prepares them 
for use by the traffic predictor. Second, it schedules periodic updates to the traffic predictor 
through a recalibration process using new data collected from the previous period.  

To be specific, figure 7 illustrates the main components of the MLP models. The algorithm 
considers that the environment variables (e.g., weather) and external event variables (e.g., 
incidents) affect the transition probability matrices between different traffic states. A decision 
tree model based on the historical data determines if the external events are influential to the 
traffic condition and whether the Markov model will be applied. The time series model takes 
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online data as input to reflect the most current traffic conditions observed in the field. This 
makes the prediction model robust, particularly during special conditions that have different 
traffic patterns from regular scenarios. 

 
Source: Federal Highway Administration 

Figure 7. Diagram. Proposed machine learning-based prediction model algorithm. 
 

 

Source: Federal Highway Administration 

Figure 8. Diagram. Representation of the Integrated Modeling for Road 
Condition Prediction machine learning-based prediction (MLP) process. 
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Data 

A total of 14 variables are categorized into three groups, including network environment, 
external event, and traffic states. The traffic states are collected by detectors and the weather data 
are collected from NWS modeling and forecast systems for use within the IMRCP system. 

Model Calibration 

Figure 8 shows a graphical representation of the IMRCP MLP algorithmic flow. First, MLP 
understands which facility group (e.g., functional type) the link belongs to and extracts data 
about network external condition scenarios (e.g., system variables, such as weather and 
incidents). Then, it pulls the most relevant historical data and calculates inputs for the Markov 
and time series models. Online detector data feeds are also used as inputs to ensure predicted 
traffic conditions can best reflect real-time conditions. In the MLP software, to predict traffic for 
links without detectors, a neural network model is constructed by fusing data of different sources 
(i.e., detector observation and real-time prediction data from nearby links). Predicted values from 
the nearest downstream links with detectors (within 10 miles) for normal conditions are used for 
the prediction of links without online data. This extends the predictability of most of the links on 
the network. For remote links without detectors nearby, it is recommended to use either online or 
historical private sector data (e.g., INRIX, HERE) for prediction.  

Results  

The prediction results of the normal case are shown in figure 9; cases with incidents are shown in 
figure 10. The Markov-based model is compared with a weighted time series model without 
Markov processes. Figure 11 shows the predictions of light and heavy rain conditions and light 
and heavy snow conditions. For all cases, the model can capture the drops and turning-backs 
well. 

 
mph = mile per hour. TS = time series. 
Source: Federal Highway Administration 

Figure 9. Graph. Prediction of normal case with daily traffic patterns. 
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A. Graph. Predictions of speeds with incident (per 15 minutes). 

 

B. Graph. Predictions of speeds with incident (per 30 minutes). 

 

C. Graph. Predictions of speeds with incident (per 1 hour). 

h = hour. mph = mile per hour. 
Source: Federal Highway Administration 

Figure 10. Graphs. Predictions of speeds with incident on link. 
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        A. Graph. Speed Predictions (Light Rain)     B. Graph. Speed Predictions (Heavy Rain) 

 

        C. Graph. Speed Predictions (Light Snow)    D. Graph. Speed Predictions (Heavy Snow) 

h = hour. mph = mile per hour. TS = time series. 
Source: Federal Highway Administration 

Figure 11. Graphs. Predictions of speeds with rain and snow weather condition. 

Error rates, root mean square error, and mean absolute error are used to evaluate the performance 
of the proposed model. The error rates of the normal case are between 5 and 9 percent. For the 
cases with an incident on the link or downstream of the link, the error rates of the predictions for 
the Markov-based model are between 9 and 18 percent, while the error rates of the time series 
model, without the Markov process, is between 53 and 60 percent. It shows that the MLP 
package using the Markov-based time series model is significantly more accurate than the 
traditional time series model. The prediction of weather events shows that the model can 
generally capture the drops and trends of speeds during the weather conditions. The error rates 
are below 10 percent and the root mean square errors are below 6 percent.  
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Predictions of special events are conducted. Links are selected based on the observation of 
historical data sets. Examples for game days of the Kansas City Royals are shown in figure 12. 
Generally, the predictions of the model can capture the congestion patterns caused by special 
events well. 

 
h = hour. mph = mile per hour. TS = time series. 
Source: Federal Highway Administration 

Figure 12. Graph. Examples of predictions for special events. 

For links with no detectors providing real-time traffic data, data from the downstream detectors 
will be utilized to predict the future speed values. A neural network model is built to predict the 
link traffic speed under normal cases based on the downstream detector data. If there are external 
conditions, the same transition matrices are applied. Predictions of traffic speed during 10 days 
on two detectors are show in figure 13. The predicted values can detect recurrent patterns and 
speed drops, including congestions caused by incidents. The error rates are about 3.5 percent and 
2 percent, which are satisfactory.  



33 
 

 
A. Graph. Predictions for detector with incidents. 

 
B. Graph. Predictions for detector with recurrent patterns. 

mph = mile per hour. 
Source: Federal Highway Administration 

Figure 13. Graphs. Examples of predictions for links without detectors. 

Generally, the results show a relatively accurate prediction under the conditions of incidents and 
bad weather conditions, with error rates between 4 and 18 percent. Compared to the benchmark 
models, the MLP model can capture the most potential changes in traffic states and can provide a 
reliable prediction using the Markov transition matrices. The performance of the MLP package is 
superior to the benchmark model for both cases with and without external conditions. The MLP 
package is able to accurately capture the recurring and non-recurring traffic congestion. 
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CHAPTER 4. EVALUATION 

INTRODUCTION 

This chapter provides a summary of the Integrated Modeling for Road Condition Prediction 
(IMRPC) evaluation effort. The complete details and results of the evaluation are documented 
within the evaluation report.  

SUMMARY OF FINDINGS 

The evaluation explored whether or not IMRCP had an impact on the Kansas City Scout (KC 
Scout) operations and to assess whether the information was useful to the KC Scout operators 
and supervisors. The key questions guiding the evaluation data collection and analyses are: (1) 
Did IMRCP have an operational impact? and (2) Did the users consider the IMRCP information 
useful? To explore whether IMRCP had an impact, the evaluation investigated the accuracy of 
IMRCP speeds and speed forecasts. To investigate whether IMRCP information was useful, KC 
Scout operators and supervisors were interviewed to obtain their insights and perspectives. The 
findings in this section describe the outcomes of investigating speed and speed forecast accuracy 
and operator and supervisor perceptions of IMRCP’s operational impact and usefulness.  

Did Integrated Modeling for Road Condition Prediction Have an Operational Impact?  

This evaluation found that IMRCP had minimal operational impact during the 2018–2019 and 
2019–2020 winter driving seasons. However, operators did report that they often referred to 
IMRCP for weather forecast information prior to weather events. They stated that during normal 
day operations, they relied on existing KC Scout tools, applications, and information sources to 
monitor real-time traffic operations. Consequently, IMRCP speeds and speed forecasts were 
basically unused by the operators.  

Analysis of the Traffic Estimation and Prediction System (TrEPS) and machine learning-based 
prediction (MLP) speeds and speed forecasts at three locations during seven winter days revealed 
that the two IMRCP models produced speeds and speed forecasts of varying accuracy. Three 
types of analyses for each location and date were completed: 

• Analysis of historical predicted speeds. 
• Analysis of forecast speeds for 15-, 30-, 45-, 60-, 75-, 90-, 105-, and 115-minute (min) 

predictions. 
• Analysis of speed forecast errors (absolute, relative absolute, and root mean square 

errors). 

Looking at the accuracy of historical predicted speeds, TrEPS speed data were found to be 
problematic on several dates, sometimes with several hours of predicted speeds considerably 
different (over 20 miles per hour [mph]) from the detector speeds. The TrEPS model predicts 
speeds using several input parameters, such as changes to posted speed limit, roadway 
construction (or blockage) information, and detector data. If any of these inputs are inaccurate or 
missing, it may affect TrEPS ability to predict accurate speeds. For example, it appeared that 
speeds reported by TrEPS at Interstate 435 (I–435) eastbound at State Line Road were affected 
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by a construction work zone that was not reported by KC Scout. The MLP speed data often 
appeared to be within about 5 mph of the detector speeds and were much less affected by the I–
435 at State Line Road construction work zone changes, but occasionally had periods with large 
deviations (up to 20 mph) above or below the detector speeds. 

Analysis of forecast speeds found that MLP and TrEPS speed forecasts both showed periods 
where the forecasts appeared to have large deviations (up to 20 mph) above and below the 
detector speeds. The deviations appeared to grow larger and for longer periods of time with 
longer-term forecasts. The MLP forecast speeds tended to more closely match the detector 
speeds than the TrEPS forecasts and the errors were examined in the forecast speed error 
analysis.  

The analysis of speed forecast errors used three formulas to calculate and compare the speed 
forecast errors: absolute, relative absolute, and root mean square error. 

The absolute error analysis measured the difference between the forecast speed and the actual 
detector speed. In general, when examining the 15–115-min speed forecasts: 

• The MLP absolute error showed that shorter-term forecasts tended to be more accurate 
than longer-term forecasts. The results at the three detector locations (I–435 at State Line 
Road, I–435 at East Stadium Drive, and I–435 at East Antioch Road) showed the 15-min 
forecasts were from 3 to 8 mph more accurate than the 115-min forecasts. 

• The TrEPS absolute errors showed mixed results for speed forecasts. At I–435 and State 
Line Road, the absolute errors were relatively consistent across all forecast times. On 
January 29, 2020, the absolute error was relatively consistent, ranging from about 35 to 
42 mph. However, on February 12, 2020, the absolute error was about 40 mph for the 15-
min forecast, decreased to about 11 mph for the 75-min forecast, then increased to about 
21 mph for the 105-min forecast. 

• The TrEPS absolute errors for speed forecasts tended to be larger than the MLP absolute 
errors. At I–435 and State Line Road, the average TrEPS error across all forecast times 
was about 26 mph versus about 10.6 mph for MLP. At I–435 at East Antioch Road, the 
average TrEPS error across all forecast times was about 33 mph versus about 7 mph for 
MLP. 

The relative absolute error measured how large the absolute error was compared to the actual 
speed and provided the percent size of the error. In general, when examining the 15–115-min 
speed forecasts: 

• The MLP relative absolute error also showed that shorter-term forecasts tended to be 
more accurate than longer-term forecasts, in that the error as a percentage of the speed 
was smaller for shorter-term forecasts. The results at the three detector locations showed 
the 15-min forecasts were from 7 to 18 percent versus from 13 to 41 percent for the 115-
min forecasts. 

• The TrEPS relative absolute errors generally showed mixed results. At I–435 and State 
Line Road, the relative absolute errors were relatively large (ranging from 40 to over 100 
percent) and mostly consistent across all forecast times. The average relative absolute 
error was about 73 percent for all forecast times. On January 29, 2020, the relative 
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absolute error was about 66 percent for the 15-min forecast, steadily decreased to about 
18 percent for the 75-min forecast, then increased to about 48 percent for the 105-min 
forecast.  

• Comparing TrEPS to MLP, the TrEPS relative absolute errors were generally larger. At 
I–435 and State Line Road, the average TrEPS error across all forecast times was about 
73 percent versus about 29 percent for MLP. At I–435 at East Antioch Road, the average 
TrEPS error across all forecast times was about 56 percent versus about 12 percent for 
MLP. 

The root mean square error measured the spread (or concentration) between forecasts and actual 
speeds. In general, when examining the 15–115-min forecasts: 

• The MLP root mean square error showed that shorter-term forecasts errors tended to be 
smaller than longer-term forecasts. The root mean square error ranged from 3 to 12 mph. 

• For TrEPS, the root mean square errors were relatively consistent across all forecast 
times. The root mean square error ranged from 19 to 32 mph. 

• Comparing the root mean square errors of TrEPS to MLP, the TrEPS root mean square 
errors were found to be two to three times larger than the MLP root mean square errors. 
At I–435 and East Antioch Road, the average TrEPS error across all forecast times was 
about 27 mph versus about 9 mph for MLP. 

Did Users Consider Integrated Modeling for Road Condition Prediction Information as 
Useful? 

This evaluation found that KC Scout operators and supervisors liked the weather-related 
prediction components of IMRCP, but preferred to use existing tools for obtaining information 
about real-time traffic conditions and incidents. Although road and weather information were 
sometimes helpful, the operators did not rely on IMRCP to select more relevant operational 
strategies. A KC Scout representative stated that IMRCP might be a helpful tool for planning and 
assessing winter maintenance response efforts and emergency operation staffing decisions. 

The operators stated they accessed IMRCP when weather events were approaching, and found 
the weather information helpful. They mentioned that IMRCP was useful for both rain and 
winter weather, but more so for when winter weather was expected. The operators used it less 
during heavy rain or flooding events. Otherwise, the operators tended to not use IMRCP as part 
of their normal daily routines. In general, the operators did not use the traffic predictions 
capability. The operators said they liked the precipitation/weather predictions and the pavement 
status predictions because they can provide some insight into what locations to monitor more 
closely as the weather moves in. The operators used this feature to find areas with potential 
issues affected by the incoming weather. They reported it helped them prioritize and focus 
attention on particular roadway sections or areas, which in turn may improve their 
communication and decisions relating to motorist assist deployments. One user reported that 
IMRCP has been informally used to help inform transportation management center (TMC) 
staffing decisions during a weather event (e.g., should additional staff be called in, or can staff be 
sent home?). 
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The operators reported using IMRCP during the weather event in a more limited capacity. They 
are often busy during the weather events performing priority duties and responsibilities, such as 
entering, monitoring, and updating incidents into their system.  

The operators typically do not use IMRCP to assess an event that has already passed; however, 
they acknowledge it may be helpful for data analysis and evaluation to determine lessons 
learned. One user believed there was a benefit to using IMRCP capabilities and its weather event 
data to look back and assess winter maintenance response efforts and emergency operation 
staffing decisions. Insight gained could potentially help save the agency staffing and monetary 
resources. 

Overall, the users reported a fair confidence in the weather-related prediction components of 
IMRCP. As mentioned earlier, the operators did not use the traffic prediction components. The 
operators also indicated that periods of IMRCP downtime negatively affected the usage of 
IMRCP in their daily routines, especially in the 2019–2020 winter season. The operators’ 
responses from the interviews seemed to indicate a more frequent use of IMRCP in the 2018–
2019 winter season. 

The evaluation has resulted in a better understanding of the impact the IMRCP phase 3 had on 
KC Scout operations, the accuracy of the speed predictions and forecasts, and the usefulness of 
the information to KC Scout operators and supervisors.  
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CHAPTER 5. ANALYSIS, CONCLUSIONS, AND RECOMMENDATIONS FOR 
FURTHER STUDY 

The Integrated Modeling for Road Condition Prediction (IMRCP) demonstration in the Kansas 
City area has generated a significant body of operations data and experience. This section 
summarizes lessons learned and deployment considerations, describes some potential 
applications for IMRCP, draws conclusions from the demonstration, and recommends topics for 
further study. 

LESSONS LEARNED 

Accessing and maintaining data services needed to feed IMRCP are significant challenges. 
Weather forecast data are voluminous but manageable due to the well-documented National 
Oceanic and Atmospheric Administration (NOAA) and National Weather Service (NWS) 
interfaces. These apply nationally and can be reused in any IMRCP deployment within the 
continental United States. Even so, NOAA has changed some interfaces during the course of this 
project that required recoding some data collections components. Collection of weather data 
from NOAA sources is not easily configured by non-information technology (IT) or non-
meteorological staff. 

Access to traffic data is problematic. Real-time access to agency data is preferred but may be 
difficult to maintain. Advanced transportation management system (ATMS) software is not 
typically focused on sustained data provision beyond the transportation management center 
(TMC), and those data feeds are generally less important to an agency than its own internal 
operations users. In addition, historical data archives needed for training the traffic models may 
not be in the same data formats or be as accessible as the real-time data. Third-party and 
commercial data (e.g., from probes) may not be any more accurate, and may not be available in 
real time for IMRCP integration (depending on contracts with agencies and their terms of 
service). Many of these concerns would be mitigated by an IMRCP deployment within a 
transportation agency’s own TMC, where tighter configuration control over system metadata and 
fewer potential network access issues. 

Hydrological data may be available, but not necessarily through a transportation agency. 
NOAA/NWS has made great strides in this area during the course of this project and has 
advanced data availability from its own hydrological networks and those of partner agencies. 
Data for small streams are less available, but increasingly important for more extreme severe 
weather systems. Hydrological data are also still difficult to relate to the transportation network. 
Flood stages are generally identified with particular stations, and do not necessarily relate to 
geodetic references enabling reference to nearby roadways. 

Geographical and time references of data are essential to data integration across such disparately 
sourced data sets. While weather data are well referenced in space and time, that is not 
necessarily the case with traffic data, which are more typically associated with a road network 
link. IMRCP needs to know the applicable location of the sensed traffic data rather than the 
location of the sensor, mast, or cabinet. In this context, using sensor identifiers (ID) is difficult to 
manage. Even within a particular system context, IDs may vary in time for a fixed set of assets—



40 
 

for example, in assigning a new one, or moving/revising an old one. Managing IDs across 
applications or systems is more difficult since each component may prefer or need its own IDs 
for a common set of objects. Time references for data have issues with determining their extents, 
meaning to the range of times over which the values are valid. When does the value become 
relevant or age out? Sometimes references assume an equally spaced series of data values (for 
example, in traffic detection) whereas others create new data points only when the value changes 
(for example, in the hydrological data feeds). Both models suffer from difficulty in handling gaps 
in the series of time-based observations. 

IMRCP traffic forecasts demonstrated their capability and value, particularly in filling the field 
of near real-time views and very short-term predictions (fewer than 30 minutes [min]). The 
accuracy and reliability of the predictions are, nonetheless, somewhat limited by data 
availability. Accuracy and reliability affect the confidence with which operators and other users 
view the predictions, and their applications, in weather-responsive management strategies 
(WRMS). The solution likely has multiple facets, some of which are not directly under the 
control of the IMRCP models or deployments. Improving the maintenance, calibration, and 
reliability of agency fixed traffic detectors to provide a “ground truth” view would greatly 
improve model accuracy. Sections of the roadway network with sparse traffic data would benefit 
from using real-time probe data to supplement the fixed detectors. Adding traffic data quality 
checking to isolate detectors that may be out of calibration would improve the reliability of the 
forecast models. 

Based on the project experience, operators are very focused on the here and now, monitoring 
known problem areas and incidents. They do not necessarily have the time or means to address 
the overall network conditions or to ask what might be about to happen. As such, it may be hard 
for operators in such environments to appreciate the potential of a traffic forecast, particularly 
when it requires monitoring yet another application or screen in a TMC. There seems to be a 
strong preference for having outputs integrated into existing TMC interfaces. 

Maintenance personnel are focused almost exclusively on the weather forecasts. Traffic is not a 
first-order consideration in treatment plans, other than generally identifying priority routes. They 
may be unclear on how IMRCP fits with other road weather tools like maintenance decision 
support systems (MDSS). They generally want a long view of weather conditions commensurate 
with the duration of a storm, which may need forecasts 24–48 hours (h) in advance. That time 
horizon is inconsistent with the 2-h window available with the traffic forecasting tools used in 
this demonstration deployment. 

IMRCP, as deployed for this demonstration, has not been able to demonstrate the feedback of 
treatment and observed conditions into the forecast models. This is primarily an issue of having 
insufficient winter maintenance reporting in the study area (although the Missouri Department of 
Transportation [MODOT] is now addressing that opportunity) and would also require road 
condition model updates to accommodate the treatment data. It has not been an issue in the 
Kansas City deployment due to the type and extent of winter weather conditions encountered 
during the demonstration interval, but it would be a bigger issue in hard winter areas where snow 
and ice are on roads for an extended multi-storm period. 
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Success in IMRCP applications will depend, to some extent, on building awareness of WRMS 
and their benefits. This may be the exception rather than the rule among agencies that would be 
candidates for IMRCP deployments. That awareness greatly facilitates discussions of the 
potential value and application of IMRCP in operations. This phase 3 deployment was unable to 
identify or implement any specific strategies. 

Although the current IMRCP deployment provides extensive data resources, it is difficult to 
evaluate the forecast results. This is partially just the volume and temporal/spatial complexity of 
the data sets, but also identifies a need for more robust forecast performance measures. Once 
those are identified, they could facilitate inline performance monitoring as events move from 
initial conditions through the forecast periods. This would further support a performance 
dashboard for the roadway network and the IMRCP system itself. 

DEPLOYMENT CONSIDERATIONS 

An emphasis in phase 3 was to investigate the potential for interested agencies to develop their 
own deployments of an IMRCP system. This section summarizes the relevant considerations in a 
localized IMRCP deployment. A description of deployment needs and processes is detailed in 
the non-binding user manual, Integrated Modeling for Road Condition Prediction Installation 
and Administration Guide.10  

Any agency intending to deploy a predictive capability, such as IMRCP, should have a collective 
institutional interest in the opportunity. The upper-management levels will need to have a vision 
of the potential of predictive analytics to prepare for and support its implementation. Technical 
champions will be needed to provide expertise and direction in its intended applications. And 
invested users will be essential in application of the system to operations strategies. Deployments 
without these institutional stakeholders will be challenged to develop and support sustained 
effective operations.  

Building and deploying an IMRCP instance is detailed in the non-binding user manual, 
Installation and Administration Guide.11 The IMRCP system and its components and 
documentation have been developed under U.S. Department of Transportation (USDOT) 
sponsorship and are available to interested parties on the Intelligent Transportation Systems 
(ITS) CodeHub.12 Software components are open-source licensed, except for some TrEPS 
components that are available for download as executables. Other server components used in the 
phase 3 IMRCP demonstration have also used open-source software. The database server is an 
open-source MariaDB Server, and Apache Tomcat® 8 software is used for the application/web 
server. Other commercial databases and web servers could be used if administratively required 
for a particular environment. Java™ Runtime Environment 1.8 should also be installed on the 
server.  

                                                            
10 USDOT, Integrated Modeling for Road Condition Prediction Installation and Administration Guide, FHWA-JPO-
18-746 (October 2019). 
11 USDOT, Integrated Modeling for Road Condition Prediction Installation and Administration Guide. 
12 “Explore ITS CodeHub,” USDOT Intelligent Transportation Systems Joint Program Office (ITS–JPO), accessed 
June 8, 2020, https://its.dot.gov/code/. 

https://its.dot.gov/code/


42 
 

In practice, deploying an IMRCP system generally requires setting and configuring the server 
environment and the application components, identifying and configuring the data access 
components needed for model localization, configuring the models to use the localized data, and 
monitoring and maintaining the system. Although the computational components have been 
designed to accommodate some irregularities in data access and quality, the distributed nature of 
the system data sources and services requires consistent monitoring to assure a high quality of 
service.  

Much of the data presented to users through the IMRCP interfaces are associated with the road 
network of the study area. The definition of the area to be modeled needs to consider the 
potential applications, extent of the network, availability of data from traffic monitoring and 
control systems, and effort needed to acquire the data and model the network. For example, 
creating the road network for the IMRCP study area is a critical and potentially time-consuming 
process. As described earlier, the Kansas City metro deployment in phase 3 modeled almost 
6,000 road network links. The link data, though generally available from agency and third-party 
systems, have to be configured for the specific traffic and road condition models to be used in the 
deployment. The phase 3 demonstration did not completely automate that process, and 
significant manual quality checking of the underlying data was needed to assure consistency 
across two traffic models and the road weather model. 

IMRCP uses many local data sources specific to the study area. Ease of access to and quality of 
data available for the area are important considerations that may not, themselves, determine the 
relative value of a deployment, but nonetheless affect the deployment’s applications and utility. 
Relative to the demonstration deployment, the study area uses data from traffic detectors 
maintained by the KC Scout TMC, but the traffic model calibration found that data availability 
from some detectors for calibration was not reliable enough to use in training and operating the 
system. System metadata (such as the location of the traffic sensors on the network links) 
presented similar challenges with availability and precision. 

The accuracy of IMRCP predictions is directly related not just to the physical model of the road 
network, weather, and hydrology, but also to the operations and event data within the modeled 
region. TMC operators and ATMS software generally excel at identification and management of 
incidents and ITS traffic controls. Work zone management and winter maintenance operations 
may not, however, be integrated with those ATMS systems. Operational awareness of special 
events may be similarly limited. This is especially challenging in an area like the Kansas City 
study area, which has multiple State and local operating agencies. Identifying and entering data 
for work zones in the area, beyond those directly provided by the automated ATMS data feed, 
involved going to two State and multiple county/municipal data sources for work zone locations 
and schedules, with an IMRCP system manager entering the work zone data manually. 

POTENTIAL APPLICATIONS 

IMRCP and its predictive analytics have potential benefits and applications across transportation 
management and operations. At a high level, IMRCP may offer agencies operational awareness, 
informed planning and response, and improved safety and mobility.  
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IMRCP can offer TMC staff, winter maintenance staff, and other decision makers improved 
insight and overall awareness of the effect of impending weather on traffic. Agencies can 
monitor condition information, such as traffic, pavement state, pavement and air temperatures, 
precipitation, wind, and flooding, that is more typically distributed across multiple systems.  

With the enhanced operational awareness and predictive analytics, agencies can better plan and 
make strategic decisions. For example, the capability of viewing future impacts may prompt the 
agency to issue news releases or social media alerts, update the staffing plans for incident 
responders or snowplow drivers, change work zone plans, arrange for alternate traffic routes, 
enact traffic controls (e.g., variable speed limits [VSL], variable message signs, ramp metering, 
road closure gates), or activate other response scenario plans. Agencies can use IMRCP and the 
collected data to analyze past events, determine lessons learned, measure performance, and guide 
future strategic decisions. 

These IMRCP benefits to transportation agency operations may be further extended in 
complementing other tools using similar data sets. As shown in figure 14, IMRCP extends user 
awareness of traffic and road conditions from the past into the present and future, beyond the 
capabilities of typical TMC tools and road weather information systems (RWIS) like the 
Weather Data Environment (WxDE). IMRCP shares road weather data and forecasts with MDSS 
while adding the traffic forecast perspective, but it does not provide the direct winter 
maintenance recommendations of an MDSS. 

 
Source: Federal Highway Administration 

Figure 14. Illustration. Integrated Modeling for Road Condition Prediction relationship to 
other weather-responsive management strategy tools. 

Pavement State Prediction 

It may be beneficial for operators to view pavement state predictions as a weather event 
approaches, especially if the event will occur immediately prior to or during peak traffic hours. 
Predictions that indicate wet or icy roads may enable operators to better prepare for such events 
by focusing attention on those particular segments of the road network. Operations staff can 
provide more timely and accurate traveler information for travelers dealing with the inclement 
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conditions. Maintenance staff otherwise without access to an MDSS may still be able to 
anticipate and make more informed plans for anti-icing and snow removal operations.  

Figure 15 illustrates conditions as a winter storm was arriving from the west of the Kansas City 
area prior to morning rush hour. An operator can see on the Pavement State and Precip Type 
layers on the map that pavements are largely dry on the eastern part of the metro, but subject to 
mixed precipitation on the western part. To view pavement state predictions for the rush hour, 
the operator moves the time function ahead to 7 a.m. The forecast conditions in figure 16 
indicate that the mixed precipitation is expected to continue with spotty wet, snowy, and icy 
pavement conditions all across the metro. 

 
Source: Federal Highway Administration 

Figure 15. Screenshot. Pavement state example – 4:30 a.m., January 22, 2020. 
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Source: Federal Highway Administration 

Figure 16. Screenshot. Pavement state prediction example – 7 a.m., January 22, 2020. 

Travel Time Predictions 

Operators and travelers may find the route travel times produced by IMRCP useful for 
monitoring congestion and commute times. During inclement weather events, users can use the 
IMRCP predictions to adjust the departure time for their daily commutes.13 As illustrated in 
figure 17, a user who lives near Interstate 435 (I–435) and Quivira and works at an office near 
the interchange between I–435 and Interstate 470 (I–470) could check to see the extent to which 
a passing winter storm will affect the usual morning commute. The user would find the routes 
layer from the road data layer tab on the map interface. This layer shows routes with available 
travel times displayed on the map. At 6 a.m., the travel time is still within reason, even with 
snow coming down (the blue shading across the map). 

                                                            
13 Travel time predictions are available for only a limited set of routes in the demonstration Kansas City deployment. 
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Source: Federal Highway Administration 

Figure 17. Screenshot. Route travel time early in a winter storm. 

As these things go, waiting for the normal 7 a.m. commute time might have its consequences. On 
the one hand, the snow might be over by then. On the other, traffic is likely to be much worse. 
Moving the slider on the time scale 1 h into the future shows predicted conditions consistent with 
that expectation (figure 18). Even though the snow is forecast to be decreasing, travel time for 
that route increases from fewer than 15 min to as much as a half hour. Predicted travel times 
could be incorporated into traveler information messages to encourage leaving earlier or later 
than normal to avoid and lessen the impact of weather events on travel times. 

Source: Federal Highway Administration 

Figure 18. Screenshot. Route travel time prediction for a winter storm. 
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Flooding Events 

The IMRCP system may be able to monitor hydrological data during flooding events for 
potential impacts on transportation infrastructure. The Kansas City demonstration study area was 
chosen, in part, because of its urban small-stream, flash-flood challenges. Transportation system 
operators and emergency services personnel can use the IMRCP system to view predictions for 
flooded roads or to look back at the behaviors of a hydrological event.  

As a historical example, the small-stream flooding of July 27, 2017, proved to be a challenging 
hydrological event for the Kansas City study area. Several roads in the study area experienced 
flooding and closures. The NWS warning captured by IMRCP on July 27, 2017, at 6 a.m. in 
figure 19 is indicated graphically on the map in figure 20. The NWS alerts layer has been 
selected and the pavement flood depth layer displays the roads that registered as flooded based 
on the NWS inundation models. The overlays are darker in some areas as an indication of 
multiple watches and warnings overlaid on one another. Flood forecast depths, to the extent that 
they are available from NOAA/NWS, would be captured and viewable on the map. Closures for 
inundated roadways are included in the IMRCP traffic forecast models. 

Providing hydrological data in an interface with traffic and weather data provides an integrated 
predictive perspective for transportation operations. Although these events are historically 
infrequent, recent industry interest in transportation resiliency suggests that they will become 
more of a concern to transportation operations in the near future. Providing an integrated view of 
conditions would enable operators to provide more specific and complete traveler information, or 
to anticipate and dispatch driver assistance and maintenance crews. 

 
Source: Federal Highway Administration 

Figure 19. Screenshot. Hydrological event alert for July 27, 2017. 
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Source: Federal Highway Administration 

Figure 20. Screenshot. Local hydrological event map for July 27, 2017. 

CONCLUSIONS 

The objectives for IMRCP phase 3 development and deployment have been met. The 
enhancements made to expand the regional view and traffic modeling capabilities have been 
integrated successfully into the system. The deployment provides real-time predictions of traffic 
and road conditions over the entire KC metro area, which incorporate data on atmospheric and 
road weather conditions, traffic, incidents, hydrological conditions, work zones, winter 
maintenance operations, and special events, when such data are available. The predictions are 
available to system users, operators, and maintainers in user-friendly maps and reports. The 
underlying IMRCP system provides a scalable framework for deployment in other areas, is 
extensible to other types and sources of data, and can support additional application-specific user 
interfaces as needed. 

Accurate and complete traffic and weather models depend on available and accurate data to drive 
the models. Incorporating available data may furthermore depend on available and accurate 
metadata that describe the data sources and their qualification. Traffic data sources for phase 3, 
for example, were challenged by scarcity (not enough data in some parts of the roadway 
network), reliability (data intermittently unavailable), and uncertainty in metadata (precise 
location of the measured data relative to the roadway). Taken together, these limitations may 
constrain the accuracy of model outputs and their utility in practical applications.  

As was noted in the phase 2 report, atmospheric weather forecast models are mature and reliable 
for large-scale events, but are less accurate for very near-term needs at road network link levels. 
Current atmospheric forecast products from the NWS used in this demonstration provide 1-h 
temporal resolution and 3-kilometer (km), or greater, spatial resolution. This temporal resolution, 

Multiple flood NWS 
Alert overlays 
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in particular, leads to operational uncertainty as to when weather fronts might have an impact on 
particular links. Higher-resolution forecast models could improve the accuracy of forecasts for 
key points on the road network. 

IMRCP phase 3 has used two very different traffic models to provide predictions for the study 
area road network. The Traffic Estimation and Prediction System (TrEPS) dynamic traffic 
assignment (DTA) approach is intended to predict flows and traffic conditions on all facilities in 
a network, including arterials. In many networks, such as this phase 3 study area, detectors are 
present only on freeways, with limited deployment on major arterials. By contrast, the machine 
learning and time series techniques used in the demonstration machine learning-based prediction 
(MLP) model are based on local approaches to speed prediction.  

The TrEPS approach was motivated by the need to support development of intelligent traffic 
management solutions that consider flows not only on freeways, but also on the surrounding 
arterials. Accordingly, the TrEPS approach has a structural representation (simulation) of the 
flow patterns through the network, and provides predictions of flow (volumes), density (or 
occupancy), and speeds that are consistent with these values. Accordingly, the approach is 
predicated first on getting the flows (the demand) right across the entire network and predicting 
the associated congestion through a traffic model. IMRCP phase 3 has further resulted in two 
methodological improvements to the TrEPS approach by implementing an adaptive flow model 
on those links that have detectors, and a method to adjust the overall network demand in 
response to weather events, based on the detector data.  

Machine learning techniques and time series models, such as those used in the MLP, have 
generally been successful in predicting speeds over the near term. They will tend to do quite well 
when there is a sufficiently rich data archive to support training the models. These methods are 
relatively simple to implement and offer a lot of flexibility, as they do not require a full network 
representation or modeling the flow patterns through the different parts of the network. As such, 
they can be deployed and scaled effectively, from a computational standpoint, to all links in a 
network with sufficient sensor data. IMRCP phase 3 demonstrated the strong potential of 
machine learning methods for speed prediction on freeway links with and near existing detectors. 

Discussions with KC Scout TMC personnel indicated that the potential of the predictive 
information was not being fully realized. There was, instead, a reliance on the real-time model 
data as a primary gauge for traffic and road conditions. This is consistent with previous 
experiences whereby predictions alone are not sufficient in a real-time setting to affect operator 
actions. An awareness of the potential operational improvements associated with WRMS would 
facilitate, and may be a prerequisite for, seeing potential value of the integrated road condition 
predictions. Where that understanding is in place, system operators and maintainers will likely be 
more open to recommendations for what to do on the basis of these predictions—for example, 
recommendations on speed advisories under predicted weather events, or routes under incidents 
or construction. Research has shown the effectiveness of interventions predicated on predicted 
conditions rather than simply reacting to prevailing ones. Going forward, the value of the kind of 
predictions that IMRCP is capable of producing lies in developing applications that build upon 
these predictions to recommend weather-responsive transportation management strategies. 
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RECOMMENDATIONS FOR FURTHER STUDY, DEVELOPMENT, AND 
APPLICATION 

The lessons learned, deployment experiences, potential applications, and conclusions from the 
IMRCP phase 3 deployment have identified both gaps and barriers to further deployments. Gaps 
discussed in this report are primarily technical, but barriers may be limited acceptance with 
operators and maintainers, ease of deployment, or operational benefits. The research team’s 
recommendations for further study are intended to close gaps, reduce barriers, and develop new 
opportunities for applying predictive capabilities in solving transportation operations challenges. 

Developing the physical road network model has required significant resources in IMRCP 
phase 2 and phase 3. A significant barrier to deployment would be lowered by considering 
automation of the road network modeling process in support of road condition and traffic 
forecasting. 

The Kansas City area deployment did not have a significant number of reliable local road 
weather observations from which to initiate forecasts. A future deployment should make more 
effective use of weather observations from mobile and fixed-road weather sources to improve the 
road condition model fidelity. 

Significant gaps in traffic detection stations on the road network have created challenges for 
calibration of the traffic models. Adding traffic probe data sources would improve the basis for 
both traffic model calibration and prediction. 

Traffic model configuration and calibration have required significant resources in phase 2 and 
phase 3. Barriers to future deployment could be considerably reduced by at least partial 
automation of traffic model configuration and calibration. 

Management of road network, traffic detection, hydrological station, and road condition sensor 
metadata was challenging throughout the project. Standardizing metadata management and 
providing an IMRCP system management interface would reduce barriers to deployment and 
improve prediction accuracy.  

Traffic data quality was found to be highly variable across the demonstration deployment 
network and through its duration. Implementing traffic data quality checking could significantly 
reduce modeling errors and improve model reliability and accuracy. 

The spatial accuracy of road condition predictions is hampered by the relatively coarse 
atmospheric forecast grids. That limitation can be addressed, and predictions improved, by 
developing or acquiring higher-resolution weather forecasts to feed the road weather condition 
models. 

As noted among the lessons learned, hydrological stations tend to provide stream levels relative 
to local flood stages, which may or may not be correlated with local roadways. A more complete 
integration of hydrological forecasts with road conditions and closures would acquire or develop 
inundation models for any risk-prone areas to be included in the deployment region. 
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Although it was not the primary focus of the phase 3 demonstration deployment, supporting 
winter maintenance strategies was identified as a potential IMRCP application by KC Scout 
staff. Those applications would suggest providing winter maintenance modeling and tools more 
in line with current agency practice. A first potential enhancement would be to extend weather 
and road condition forecasts to encompass more typical storm durations (24–48 h). Integrating 
winter maintenance and road treatment data into the road condition modeling would improve 
forecast model fidelity for longer events with maintenance interactions. 

The MLP traffic model developed in phase 3 showed significant promise as an extensible and 
efficient means of providing traffic speed predictions. It was nonetheless limited in this text 
deployment by the range and availability of data to train and calibrate the model. Its accuracy 
and applicability to this and other networks could be extended to a broader range of road and 
weather conditions. 

The extension of MLP to predict other traffic parameters, such as traffic volume and density, is 
possible with additional data sources. These data sources include ubiquitous travel time data 
from private sector providers, such as INRIX and HERE, crowdsourced probe vehicle trajectory 
data, and continuous count station volumes and information on annual average daily traffic from 
conventional sources. MLP can also be used, in combination with simulation, to provide 
predictions of traffic under various traffic and weather management strategies.  

The volume and complexity of the data sets used and generated by the IMRCP system create 
challenges in data analysis and reduction. Developing WRMS-oriented performance measures 
and a dashboard for IMRCP predictive capabilities would reduce barriers to acceptance and 
deployment and potentially enhance its operational impact by focusing operator and analyst 
attention on key performance indicators, locations, and notifications. 

IMRCP phase 2 and phase 3 have focused on the development and evaluation of integrated 
predictive methods. Providing actionable WRMS recommendations from the system based on 
predicted conditions would remove a potential barrier to deployment and enhance its potential 
impact in an operational setting. 

Future IMRCP deployments may want to prioritize opportunities to cooperate with agencies that 
would be willing to more fully integrate the IMRCP models with their TMC systems and 
operations. These opportunities would then identify specific weather-responsive management 
goals and strategies to be considered in their operations. Traffic, weather, hydrological, work 
zone, and other operations data sources would then be identified and acquired to support those 
particular goals and strategies. Models and interfaces could then be tailored to support 
implementation in those settings and with those users. 
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