Safety Implications of Managed Lane Cross Sectional Elements

Publication No. FHWA-HOP-16-076

December 2016

U.S. Department of Transportation Federal Highway Administration

Notice

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for the use of the information contained in this document.

The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers' names appear in this report only because they are considered essential to the objective of the document.

Quality Assurance Statement

The Federal Highway Administration provides high quality information to serve Government, industry, and the public in a manner that promotes public understanding. Standards and policies are used to ensure and maximize the quality, objectivity, utility, and integrity of its information. FHWA periodically reviews quality issues and adjusts its programs and processes to ensure continuous quality improvement.

			Technical Report Documentation Pag	
1. Report No.		2. Government Accession No.	3. Recipient's Catalog No.	
FHWA-HOP-16-076				
4. Title and Subtitle	5. Report Date			
Safety Implications of	Managed	Lane Cross Sectional	December 2016	
Elements			6. Performing Organization Code	
7. Author(s)			8. Performing Organization Report No.	
Kay Fitzpatrick and Ra	aul Avelar	(Texas A&M Transportation		
Institute)				
9. Performing Organization Name	e and Address		10. Work Unit No. (TRAIS)	
Battelle	Texas A	&M Transportation Institute		
505 King Avenue	State He	11. Contract or Grant No.		
Columbus, OH 43201	2935 Re	esearch Parkway	Contract No. DTFH61-12-D-	
	Texas A	&M University Research Park,	00046; Task Order No. T-	
	3135 TA	MU	5012	
		Station, TX 77843-3135		
12. Sponsoring Agency Name and			13. Type of Report and Period Covered	
U.S. Department of Tra	-		Technical Report	
Federal Highway Administration Office of Operations			May 2016-December 2016	
1200 New Jersey Avenue, SE			14. Sponsoring Agency Code	
Washington, DC 20590			FHWA-HOP	
15. Supplementary Notes				
Greg Jones, FHWA Ta	ask Manag	ger		
16 41 4				

16. Abstract

The objective of this project was to investigate the relationship between crashes and bufferseparated manage lane dimensions. The results from several previous research studies have demonstrated that reductions in freeway lane width or shoulder width are associated with more crashes. A wider managed lane envelope widths (i.e., left shoulder, managed lane, and buffer width combined) are also associated with fewer freeway crashes for both all severity levels and fatal and injury severity levels. Wider envelopes are associated a reduction of 2.8 percent (in Texas) or 2.0 percent (in California) in total freeway crashes (all severities) for each additional foot of envelope width. In California, wider envelopes are associated with a reduction of 4.4 percent in managed lane-related crashes (fatal and injury severity levels) for each additional foot of envelope width. The analysis was conducted on non-weaving managed lane segments that included a single managed lane separated from the general purpose lanes with a flush buffer area. The dataset included crashes on 128.0 miles in California (all 128.0 miles with flush buffers) and 60.4 miles in Texas (41.7 miles with pylon buffers and 18.7 miles with flush buffers). The California sites included freeways with three or four generalpurpose lanes while the Texas freeways had three to five general-purpose lanes.

17. Key Words	18. Distribution Statement			
Managed lane, safety, crashes, buffer width, shoulder width	No restrictions.			
19. Security Classif.(of this report)	this page)	21. No. of Pages	22. Price	
Unclassified	Unclassified		52	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

TABLE OF CONTENTS

LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii
CHAPTER 1: INTRODUCTION	1
Background	1
Study Objective	1
Study Approach	1
Report Organization	2
CHAPTER 2: LITERATURE REVIEW	3
Managed Lanes	3
Crashes within the Managed Lane Facility	3
Crashes at Access Points	3
Safety of Buffer-Separated High Occupancy Vehicle Lanes	
Differences in Crashes between Given Conditions	7
Freeways	
Freeway General-purpose Lane Cross Section	
Freeways With High Occupancy Vehicle Or High Occupancy Toll Lanes	10
CHAPTER 3: SITE SELECTION	13
Selection of States	13
Highway Safety Information System Crash Data	13
Texas Data	13
Selection of Sites	14
CHAPTER 4: DATA COLLECTION	15
Defining Segments	15
Variables	15
Dataset Characteristics – Geometrics	16
Dataset Characteristics – Crashes	
Texas Crash Data	
California Crash Data	20
CHAPTER 5: ANALYSIS	23
Statistical Model / Methodology	23
Overview Of Variables Considered	
Models on Freeway Crashes – California	25
All Severity Levels Crashes	
All Severity Levels Crashes – Proportion of Crashes	
Fatal and Injury Crashes	
Models on Managed-Lane Related Crashes – California	
All Severity Levels Crashes	
Fatal and Injury Crashes	
Models on Freeway Crashes – Texas	
All Severity Levels Crashes	30

A Closer Look At Buffer Widths	31
CHAPTER 6: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR	
FUTURE RESEARCH	35
Summary	35
Conclusions	
Recommendations for Future Research	37
Benefits of Pylons	37
Safety Tradeoffs when Adding a Managed Lane to an Existing Freeway	
Safety Differences between Managed Lanes with One Lane and with More than Or	ne
Lane	
Safety / Operations Differences Considering Congestion Levels	38
CHAPTER 7: REFERENCES	39

LIST OF TABLES

Table 1. Safety of lane width (fatal and serious injury crashes). ⁽¹⁸⁾	10
Table 2. Safety change per additional lane (fatal and serious injury crashes). ⁽¹⁸⁾	10
Table 3. California, number of crashes by location type for several counties	14
Table 4. Description of candidate variables	16
Table 5. Range of managed lane envelope geometric data by corridor	17
Table 6. Texas, number of crashes	20
Table 7. California, number of crashes.	22
Table 8. California, preliminary model for total freeway crashes (all severities).	25
Table 9. California, refined model for total freeway crashes (all severities)	25
Table 10. California, preliminary model of proportion of managed lane or buffer crashes	
to total freeway crashes (all severities).	27
Table 11. California, refined model of proportion of managed lane to total freeway	
crashes (all severities).	27
Table 12. California, preliminary model for total freeway crashes (fatal and injury	
severity levels)	28
Table 13. California, proportion of managed lane to total freeway crashes (fatal and	
injury severity levels)	29
Table 14. California, refined model for managed-lane related crashes (all severity levels)	29
Table 15. California, initial model for managed-lane related crashes (fatal and injury	
severity levels).	30
Table 16. California, refinded model for managed-lane related crashes (fatal and injury	
severity levels)	30
Table 17. Texas, initial model for total freeway crashes (all severity levels)	31
Table 18. Texas, refined model for total freeway crashes (all severity levels)	31

LIST OF FIGURES

Figure 1. Graphic. Buffer-separated high occupancy vehicle lanes: (a) desirable cross	
section with enforcement shoulders, (b) desirable cross section, and (c) absolute	
minimum cross section that should be used only on short-distance interim projects or	
short sections, e.g., across narrow bridge.	6
Figure 2. Chart. Proposed crash modification factor for lane width. (17)	9
Figure 3. Chart. Proposed crash modification factor for inside shoulder width. ⁽¹⁷⁾	9
Figure 4. Chart. Variation of fatal and serious injury crashes with annual average daily	
traffic for 10-lane freeways with high occupancy vehicle lanes from Florida study. ⁽¹⁹⁾	11
Figure 5. Chart. Variation of all crashes with annual average daily traffic for 10-lane	
freeways with high occupancy vehicle lanes from Florida study. ⁽¹⁹⁾	12
Figure 6. Graphic. Example of wide buffers on California I-405	18
Figure 7. Graphic. Example of wide buffer in California	18
Figure 8. Graphic. Another example of wide buffer, note motorcycle using the buffer	
area	19
Figure 9. Graphic. Example of pylons in buffer on Texas freeway	
Figure 10. Equation. Probability distribution.	
Figure 11. Equation. Initial equation.	
Figure 12. Equation. Equation with crashes per mile-year for i th site	24
Figure 13. Equation. Equation with model random effect distribution.	
Figure 14. Chart. California, managed lane and buffer crashes by buffer width	32
Figure 15. Chart. California, freeway crashes by buffer width.	33
Figure 16. Chart. Texas, freeway crashes by buffer width and presence of pylons	
(triangles for flush buffers without pylons and dashes for buffers with pylons)	34

LIST OF ABBREVIATIONS

AADT	Annual average daily traffic
AADTHV	Annual average daily traffic for the managed lane
AADTMainL	Annual average daily traffic for the general-purpose lanes
AASHTO	American Association of State Highway and Transportation Officials
Avg	Average
Buf_Type	Analysis variable; buffer type between managed lane and general-purpose
	freeway lanes – either pylons or flush
Buf_W	Analysis variable; buffer width
Dir	Direction
DOT	Department of transportation
EB	Eastbound
F	Flush buffer
FHWA	Federal Highway Administration
ft	Foot or feet
GP_Adj_W	Analysis variable; general-purpose lanes, width of lane adjacent to the managed lane
GP_All_Ln_W	Analysis variable; general-purpose lanes, width of all general-purpose lanes
GP_Avg_Ln_W	Analysis variable; general-purpose lanes, average lane width
GP_Ent	Analysis variable; general-purpose lanes, number of entrance ramps within the segment
GP_Exit	Analysis variable; general-purpose lanes, number of exit ramps within the segment
GP_NumLn	Analysis variable; general-purpose lanes, number of general-purpose lanes that are not barrier separated and are moving in same direction
GP_R_Shld_W	Analysis variable; general-purpose lanes, right shoulder width
GP_Trvl_W	Analysis variable; general-purpose lanes, travel width for general-purpose
	lanes, determined as number of lanes multiplied by average lane width
GP_Weave	Analysis variable; general-purpose lanes, number of weaving areas within
_	the segment
НОТ	High-occupancy toll
HOV	High-occupancy vehicle
HSIS	Highway Safety Information System
HV	Abbreviation used for HOV or managed lanes in analysis
Hwy	Highway
m	Meter
Max	Maximum
mi	Mile
Min	Minimum
ML	Managed lane
MLB	Managed lane or buffer related crashes
ML_L_Shld_W	Analysis variable; managed lane, left shoulder width

ML_Ln_W ML_Env	Analysis variable; managed lane, lane width Analysis variable; managed lane envelope which is the sum of left shoulder width, lane width, and buffer width
MRI	Midwest Research Institute
MUL	Managed use lane
NB	Northbound
NCHRP	National Cooperative Highway Research Program
NW Length	Sum of the lengths for non-weaving segments within the corridor
OLCR	Optimal lane changing region
Р	Pylons present within buffer area
PSL	Posted speed limit
SB	Southbound
T_Trvl_W	Analysis variable; total travel width
veh	Vehicle
WB	Westbound
yr	Year

CHAPTER 1: INTRODUCTION

This report is part of a Federal Highway Administration (FHWA) research project entitled "Synthesis of Operational Aspects and Safety Implications of Reduced Cross Sectional Elements (Buffer Width vs. Shoulder Width vs. Lane Width)".

BACKGROUND

Managed lanes (ML) are designated lanes and roadway facilities located on or adjacent to controlled access urban highways that are actively operated and managed to preserve preferential service over comparable general traffic lanes. Preferential service often implies faster travel speeds and better reliability than would be observed on adjacent general-purpose (GP) lanes that are not subject to the same level of active management. Various geometric strategies are employed to preserve these benefits such as wider lane widths or wider buffer widths with or without pylons.

STUDY OBJECTIVE

The objective of this project was to identify managed lane facilities that are currently employed in the United States in order to inventory the array of strategies regarding lane, buffer, and shoulder (inside and outside) widths. Selected strategies were then to be evaluated to determine the impacts of narrowed widths on safety.

STUDY APPROACH

The research was conducted in a series of tasks as follows:

- **Task A—Project Initiation**. The research team met with FHWA staff to discuss the project direction, scope, and work plan.
- **Task B—Collect, Review, and Evaluate Available Literature and Practices**. The research team reviewed existing literature on freeway and managed lane safety. Geometric information was obtained for a sample of existing managed lanes. This information was used to aid in identifying potential study locations. The team also identified the availability of crash data suitable for the study.
- Task C—High Occupancy Vehicle/Managed Use Lane Pooled Fund Study Panel Discussion to Develop a Short List of Candidate Facilities for Detailed Evaluation. This task involved meeting with the High Occupancy Vehicle (HOV)/Managed Use Lane (MUL) Pooled Fund Study panel to identify a short list of approximately 12 sites that will be evaluated as part of Task E. More than 12 sites were included in the study to expand the potential of finding statistical relationships between cross section width and crashes.
- **Task D—Develop Methodology for Evaluation.** This task involved the development of an evaluation methodology that was followed in Task E.
- Task E—Evaluation of Safety and Operational Implications of Reduced Cross-Sectional Elements. This task involved the review and analysis of the crash data and site data to identify potential relationships between cross section (lane, shoulder, and buffer) width and crash frequency or severity.

- **Task F—Research Report**. This task involved the development of this research report to document aspects of the study's activities and findings.
- **Task G—Project Meetings and Teleconference.** This task included participation in the following project meetings and teleconferences: kick-off meeting/teleconference, teleconferences spaced throughout the project, and HOV/MUL Pooled Fund Study Annual Meeting held April 2015.

REPORT ORGANIZATION

This report includes the following chapters:

- **Chapter 1: Introduction.** This chapter presents general background information along with the research objectives.
- **Chapter 2: Literature Review.** This chapter presents findings from the literature on managed lane and freeway safety.
- **Chapter 3: Site Selection.** This chapter describes the methodology used to select sites included in this research.
- Chapter 4: Data Collection. This chapter describes the methodology used to collect the geometric data and the crash data.
- **Chapter 5: Analysis.** This chapter describes the evaluation of the datasets and presents the results from the statistical analyses.
- Chapter 6: Summary, Conclusions, and Recommendations for Future Research. This chapter provides a summary and the conclusions of the research, and presents future research needs.
- **Chapter 7: References.** This chapter provides the details on the references used in the report.

CHAPTER 2: LITERATURE REVIEW

Managed lanes (ML) can provide safety and operational performance benefits over generalpurpose (GP) facilities, but the managed lane strategy must be appropriate for the intended user group. Specific benefits in crash reduction seen at one facility do not necessarily translate to another facility, so the selected strategy must account for the conditions unique to a particular facility. This section presents a summary of recent freeway and managed lane safety research.

MANAGED LANES

Crashes within the Managed Lane Facility

Crashes on managed lanes are assumed to most likely be related to access and sight distance issues. For some situations, a failure to appreciate driver expectancy that differs for managed lanes as compared to general-purpose lanes may contribute to crashes, for example, when drivers need to exit the managed lane several miles prior to their destination. Adequate attention to placement of traffic control devices can help.

In addition to crashes near access points, crashes can also occur within a managed lane facility. Common types of crashes within a facility can include:

- Rear-end crashes due to congestion.
- Sideswipe crashes due to passing.
- Crashes caused by drivers making unexpected maneuvers in violation of access restrictions, to avoid debris, or circumvent disabled vehicles that may block the travelway.

Crashes at Access Points

Freeway access points are common sites for crashes, just as crashes can commonly be found at intersections on surface streets. Crashes near access points can involve vehicles entering or leaving the managed lanes (e.g., sideswipe, striking separation device, etc.), and crashes can involve vehicles that are not changing facilities (e.g., rear-end crashes caused by drivers braking to avoid a vehicle entering the facility in front of them). Traffic volumes, the type of access and separation provided, and proximity of managed lanes access to general-purpose entrance and exit ramps may all have an effect on crashes, and these effects may vary from one facility to another.

A California study described comparisons of traffic safety during the morning and afternoon peak hours in extended stretches of eight high occupancy vehicle (HOV) lanes with two different types of access – four corridors with continuous access and the others with limited access. ^(1, 2) Traffic crash patterns for the two different types of HOV lanes were investigated by evaluating (a) the differences in crash distribution, severity, types of crashes, and per lane traffic utilization; (b) spatial distribution of crash concentrations by using Continuous Risk Profile approach; and (c) crash rates in the vicinity of access points in HOV lanes with limited access. In their study, the researchers conducted detailed analysis on crash data during peak hours in relation to geometry and traffic features. Based on the findings from the assessment on eight routes, the limited-access HOV lanes appeared to offer no safety advantages over the continuous-access

HOV lanes. Although the overall safety seemed comparable, the observed differences between these types of facilities were attributed to more frequent and concentrated distribution of crashes at limited-access HOV lanes.

A recent study examined two facilities in Minnesota: ⁽³⁾

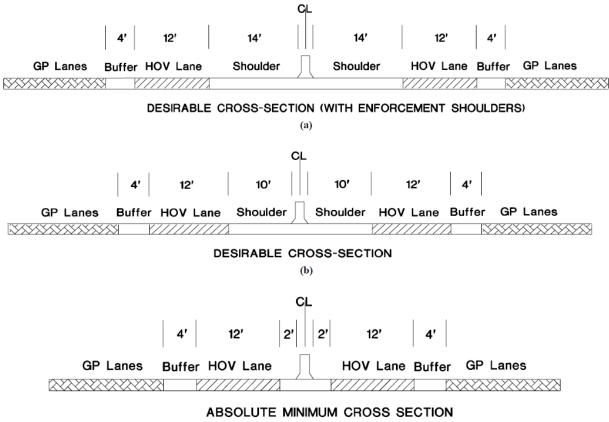
- I-394 freeway, the first dynamically priced high-occupancy toll (HOT) lane, was designed with limited access.
- I-35W, the second HOT corridor, was designed with an open access philosophy where lane changes between the HOT and the general-purpose lanes are allowed everywhere except for a few specific locations.

The authors used shockwave length as a surrogate of safety based on the assumption that the more vehicles involved in a slow-and-go maneuver, the higher the possibility a driver will fail to react in a timely manner. They commented that the source of traffic demands has a notable impact on performance with respect to safety and access. I-394 is operating well with the limited access because the majority of the demand is originating from three specific interchanges. In contrast, I-35W has a higher interchange density so the open-access philosophy is working well on that facility. The authors developed a software tool capable of defining the Optimal Lane Changing Regions (OLCRs) that can be used with planned HOT facilities that adopt a closed access philosophy. The proposed methodology defines OLCRs with respect to the positions of entrance or exit ramps. The second methodology was designed to support decisions for access restrictions on existing HOT facilities. The core is a developed model capable of emulating shockwave propagation on the HOT lane given target densities and speed differential between the HOT and the adjacent general-purpose lane.

Safety of Buffer-Separated High Occupancy Vehicle Lanes

A 2013 paper reported on an evaluation of the relationship between cross-section design (i.e., lane width, shoulder width, and buffer width) to safety performance for HOV lanes. ⁽⁴⁾ The authors used three years (2005 to 2007) of crash data for 13 southern California segments totaling 153 miles. The segments had the HOV lanes buffer-separated from the general-purpose lanes. Crashes included those that occurred on the median shoulder, in the HOV lane, or in the adjacent general-purpose left lane. Independent variables included geometric attributes and annual average daily traffic (AADT). The authors made the following observations regarding geometric cross section and crashes:

- **HOV lane width**: a wider HOV lane tends to be associated with lower crash frequencies except for the case with a width of 13 ft, which did not have enough segments to draw a conclusion.
- **AADT**: higher AADTs in HOV and left lanes, except injury crashes in the left lane, are positively related to crash frequency, which means that freeway segments with more traffic tend to have higher crash frequencies. However, injury crashes in the left lane show an opposite, negatively correlated pattern, albeit by a very small number. This implies that more traffic leads to fewer crashes in the left lane but the variation is not substantial. The causal effect was not investigated in the study, but the authors offered a potential interpretation that crashes are likely to be more severe when traffic is light due to the likely higher speeds inherent in lower traffic density.


- **Shoulder width**: the estimates indicated that wider shoulder width helps reduce crashes in HOV lanes.
- **Buffer width**: coefficients for buffer widths were not found to be statistically significant at the 10 percent level in the model.
- **Left lane width**: left lane widths were excluded in the estimated model due to their statistical insignificance (i.e., large standard errors); no inference could be drawn.

The authors stated that their findings could be used to determine the optimal cross-section and provided a case study discussion to illustrate the results. For one example, they recommended that a 12 ft lane and 10 ft left shoulder be converted to a 3.6 ft buffer, 12 ft lane, and 6.4 ft left shoulder. Two other examples were also provided in their paper, both of which suggested keeping the 12-ft lanes and shifting some of the left shoulder width into the buffer.

Cothron et al. and Cooner and Ranft reported on Texas research conducted to gain a better understanding of the safety issues and impacts associated with buffer-separated concurrent-flow HOV lanes. ^(5, 6) They reviewed hard-copy crash reports for multiple years from two urban freeways in Dallas, Texas. The objective was to determine trends and from those trends to make recommendations for absolute minimum and desirable buffer-separated concurrent flow HOV lane cross-section widths. In summary, researchers stipulate that the following factors all contribute to the increased injury crash rates experienced on the two Dallas corridors:

- High daily traffic volumes and extensive congestion in the general-purpose lanes.
- Ramp-pair combinations at or near the minimum ramp terminal spacing as recommended by the American Association of State Highway and Transportation Officials (AASHTO) in *A Policy on Geometric Design of Highways and Streets* (commonly known as the *Green Book*). ⁽⁷⁾
- Reduced HOV cross section.
- Speed differential between the HOV and adjacent general-purpose lane traffic.

Figure 1 shows recommendations for desirable and absolute minimum cross sections for future buffer-separated HOV lanes in the Dallas area. The desirable cross-section guidance provides a typical section and a section with enforcement shoulders. Both desirable cross sections provide full inside shoulders and 4-ft buffers with a standard 12-ft lane for HOV traffic.

(c)

Source: adapted from Cooner, S., and S. Ranft. Safety Evaluation of Buffer-Separated High-Occupancy Vehicle Lanes in Texas. In Transportation Research Record: Journal of the Transportation Research Board, No. 1959, parts of the text, and Figure 8, p. 176. Copyright, National Academy of Sciences, Washington, D.C., 2006. Reproduced with permission of the Transportation Research Board.⁽⁶⁾

Figure 1. Graphic. Buffer-separated high occupancy vehicle lanes: (a) desirable cross section with enforcement shoulders, (b) desirable cross section, and (c) absolute minimum cross section that should be used only on short-distance interim projects or short sections, e.g., across narrow bridge.

Cooner and Ranft provided the following summary of previous studies:⁽⁶⁾

"Golob et al. compared the frequency and characteristics of crashes before and after an HOV lane was added to Riverside Freeway, CA-91, in the Los Angeles, California, area. ⁽⁸⁾ The HOV lane was created from the inside shoulder of the roadway. The study concluded that the HOV-lane project did not have an adverse effect on the safety of the corridor, and the changes in crash characteristics were attributed to the change in location and timing of traffic congestion.

Note: abbreviations used in figure: GP = general purpose, HOV = high occupancy vehicle.

Sullivan and Devadoss led a California Polytechnic State University study that reported the effects HOV lanes have on the safety of selected California freeways. ⁽⁹⁾ The study suggested that the observed crash pattern resulted from differences in traffic flow and congestion rather than geometric and operational characteristics of the HOV facilities. The crash hot spots during the peak periods of freeways with and without HOV lanes were a result of localized congestion.

A 1979 FHWA study indicated that the lack of physical separation between the HOV lane and the general-purpose lanes can create several operational and safety problems. ⁽¹⁰⁾ The speed differential and the merging into and out of the HOV lane were thought to contribute to increased crash potential. Slow vehicles merging into a high-speed HOV lane of faster vehicles or the HOV-lane vehicles having to decelerate rapidly to merge into the generalpurpose lanes can result in either sideswipe or rear-end crashes.

The purpose of a 1995 study conducted by the Hampton Roads Planning District Commission in Virginia was to determine the safety effects of implementing a bufferseparated HOV lane. ⁽¹¹⁾ Data from HOV lane facilities around the country were reviewed to determine the impact of varying buffer widths separating the HOV lane and the generalpurpose lanes. The following HOV lane designs were reviewed: 3- to 8-ft buffer, 8-ft buffer raised 6 inches off the pavement, 13-ft buffer, and 0- to 2-ft buffer. The results indicated that the impact of the first three designs was inconclusive. However, the use of a buffer of 0 to 2 ft in width appeared to contribute to an increase in crash rates when compared to the pre-HOV crash rates for the freeways of interest. The speed differential between the HOV lane and the general-purpose lanes was identified as the possible cause of the crash rate increase.

In 2002, the Texas A&M Transportation Institute completed a multiyear research study. ⁽¹²⁾ In this study, injury crash rates were compared from before and after buffer-separated HOV lanes were implemented in two corridors. There was an increase in injury crash rates for the after condition; however, only one year of after data was available during this study. Several factors that may have contributed to an increase in crash rates were identified. These factors included the loss of the inside shoulder and a reduction in general-purpose lane width from 12 to 11 ft for implementation of the buffer-separated HOV lane.

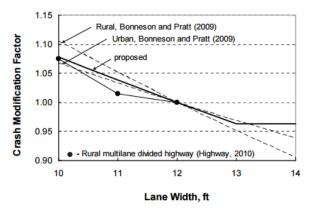
Other recent research conducted by the Midwest Research Institute (MRI) studied crash data from California on freeways where the inside shoulder was converted to a travel lane and the other lanes were reduced in width. ⁽¹³⁾ All the freeways examined statistically used the converted inside lane as a concurrent-flow HOV lane. The analysis indicated that crash frequencies increased an average of 11 percent after the freeways were changed in this manner. However, the MRI research team did not attempt to explain the increase in the number of crashes. MRI's primary data source was the Highway Safety Information System database." (Source page 168-169 in reference 6)

Differences in Crashes between Given Conditions

An Empirical-Bayes statistical estimation procedure was conducted to evaluate the effects of tolling on the I-394 MnPass Lanes in Minnesota, which opened for operation in 2005. ⁽¹⁴⁾ AADT data were used from 1998 to 2008. A four-year observation period was used before the start of

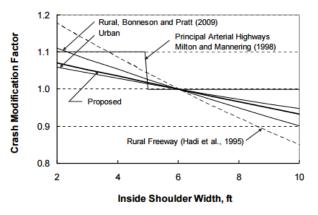
tolling as well as a two-year post deployment observation period. Crash data of interstate highways in the Minneapolis-St. Paul (Twin Cities) seven-county metropolitan area from the Minnesota Department of Transportation (DOT) were used. The study found the overall number of crashes to be reduced by 5.3 percent, with an economic benefit of \$5 million from 2006 to 2008. The authors of the paper stated that they were not confident that their results could be transferred to other HOT lane projects because of the limited research on this issue, and the newness of many HOT lanes that have recently opened.

A 2012 paper presented results of a safety analysis of a time-of-day managed-lane strategy that concurrently allows use of the inner left lanes by high-occupancy vehicles and use of right shoulders as general-purpose lanes during peak hours. ⁽¹⁵⁾ The crash data (3 years), corresponding annual average daily traffic volumes, and lane-type-specific AADT volumes were identified for various lane types, including the inner left lanes for HOV-only use during peak hours, general-purpose lanes, right shoulder lanes, and all lanes as a whole. Negative binomial regression models were used to estimate the effect of this traffic operations system and other factors relevant to crash frequency. The negative binomial regression model analyses presented no evidence that the interest factors, including the managed-lane strategy during peak hours, AADT volumes, merging and diverging influence areas, weather, light conditions, and existence of pull-off areas affected the crash frequency when aggregated across all lanes. The variable AADT volumes in the specific analysis of general-purpose lanes appear to be significant and show about a 2 percent increase in weekday crashes for each increase of 1,000 vehicles per day in the AADT range of 50,000 to 83,000 vehicles per day. Right shoulder-specific analysis shows that motorist behaviors at the merge and diverge areas during adverse light conditions are significant and shows an increase of about 38 percent in crashes in these areas. The managedlane strategy does not appear to be significant to the crash frequency in the inner left lanes for HOV, general-purpose lanes, or right shoulders.


FREEWAYS

The *Highway Safety Manual* (HSM) now includes crash predictive methods for freeways. ⁽¹⁶⁾ The developed chapters were based on research conducted as part of National Cooperative Highway Research Program (NCHRP) 17-45. ⁽¹⁷⁾ The researchers found that reductions in lane widths and inside (left) shoulder widths are associated with increased crashes. The proposed crash modification factor for the HSM along with the findings from other recent work is shown in Figure 2 for lane width and Figure 3 for inside (left) shoulder width. The range of shoulder widths included in the NCHRP 17-45 study was 2 to 12 ft. An inside shoulder width of 6 ft was assumed as the base condition. Some agencies avoid inside shoulder widths greater than 4 ft and less than 8 ft because of concerns that drivers may attempt to seek refuge in a space that does not have sufficient width to accommodate a typical vehicle (6 ft) plus clearance (desirably 1 ft to 2 ft as discussed in the *Green Book*, see Section 4.4.2, page 4-10). ⁽⁷⁾

FREEWAY GENERAL-PURPOSE LANE CROSS SECTION


A recent Texas DOT project that examined the tradeoffs of reducing lane and shoulder widths to permit an additional freeway lane also identified increased crashes when the widths of lanes or shoulders are reduced. ⁽¹⁸⁾ The identified safety improvements included the following:

- Table 1 provides the safety benefit of 12-ft lanes compared to 11-ft lanes, based on the number of travel lanes per direction, when there are not changes in the other variables included in the model.
- The safety improvement associated with increased left shoulder width is a reduction of crashes by 5 percent per additional foot of left shoulder, when there are no changes to the other model variables.
- The safety improvement associated with increased right shoulder width is a reduction of crashes by 9 percent per additional foot of right shoulder, when there are no changes to the other model variables.
- There is a safety improvement associated with each additional lane (see Table 2).

Source: Figure 49 on page 142 of Bonneson, J., A. S. Geedipally, M. P. Pratt, and D. Lord (2012). Safety Prediction Methodology and Analysis Tool for Freeways and Interchanges (NCHRP Project 17-45, online final report). Reproduced with permission of the Transportation Research Board. ⁽¹⁷⁾

Figure 2. Chart. Proposed crash modification factor for lane width. (17)

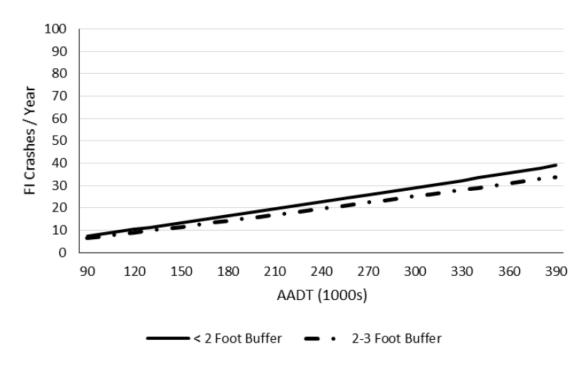
Source: Figure 51 on page 144 of Bonneson, J., A. S. Geedipally, M. P. Pratt, and D. Lord (2012). Safety Prediction Methodology and Analysis Tool for Freeways and Interchanges (NCHRP Project 17-45, online final report). Reproduced with permission of the Transportation Research Board.⁽¹⁷⁾

Number of	Multiplicative Effect in	Fatal and Serious Injury Crash Reduction			
Lanes	Model	of a 12-ft Lane Compared to 11-ft			
2	0.95	5%			
3	0.93	7%			
4	0.90	10%			
5	0.88	12%			

Table 1. Safety of lane width (fatal and serious injury crashes). ⁽¹⁸⁾

Source: Table 45 on page 76 from Dixon, K., K. Fitzpatrick, R. Avelar, M. Perez, S. Ranft, R. Stevens, S. Venglar, and T. Voigt (2015) *Reducing Lane and Shoulder Width to Permit an Additional Lane on a Freeway: Technical Report.* FHWA/TX-15/0-6811-1.

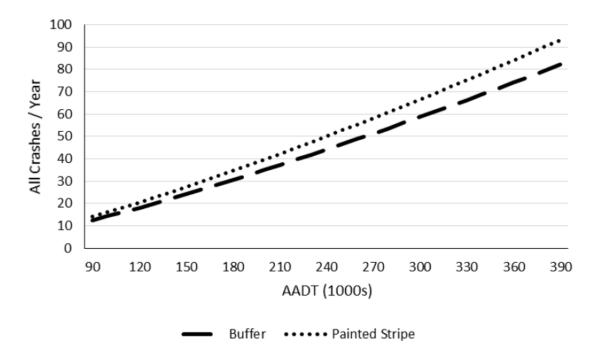
Average Lane Width (ft)	Multiplicative Effect	Reduction of Fatal and Serious Injury Crashes per Additional Lane		
11.0	0.76	24%		
11.5	0.75	25%		
12.0	0.74	26%		


Table 2. Safety change per additional lane (fatal and serious injury crashes). ⁽¹⁸⁾

Source: Table 46 on page 77 from Dixon, K., K. Fitzpatrick, R. Avelar, M. Perez, S. Ranft, R. Stevens, S. Venglar, and T. Voigt (2015) *Reducing Lane and Shoulder Width to Permit an Additional Lane on a Freeway: Technical Report.* FHWA/TX-15/0-6811-1.

While the research also identified that an additional lane can result in reductions in crashes, whether the benefits of the additional lane completely offset the consequences of the reduced lane and shoulder widths would depend upon the conditions present at the site. The authors of the Texas study developed an equation and a spreadsheet that could be used to evaluate the tradeoffs. Note that the Texas work focused on freeways with general-purpose lanes rather than freeways that include a managed lane.

FREEWAYS WITH HIGH OCCUPANCY VEHICLE OR HIGH OCCUPANCY TOLL LANES


A Florida study developed crash prediction equations for freeways facilities with HOV and HOT lanes. ⁽¹⁹⁾ The authors developed unique models by number of freeway lanes. Models were developed for 6-, 8-, 10-, and 12-lane freeways (number of lanes reflect both directions and include the managed lanes). For all the models, segment length and AADT were significant and included. For most of the models, left shoulder width was the only other significant variable. An increase in left shoulder width was associated with decreases in crashes. The effect of buffer type on crashes was found to be statistically significant only in the model for 10-lane freeways with an inclusion of a 2- to 3-ft buffer being associated with fewer fatal and injury crashes. Figure 4 illustrates the findings for fatal+injury crashes and Figure 5 for all crashes.

Source: Figure 4.5 on page 40 from Srinivasan, S., P. Haas, P. Alluri, A. Gan, and J. Bonneson (2015) Crash Prediction Method for Freeway Facilities with High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) Lanes. FDOT Contract BDV32-977-04.

Note: abbreviations used in figure: FI = fatal and serious injury, AADT = annual average daily traffic.

Figure 4. Chart. Variation of fatal and serious injury crashes with annual average daily traffic for 10-lane freeways with high occupancy vehicle lanes from Florida study. ⁽¹⁹⁾

Source: Figure 4.6 on page 40 from Srinivasan, S., P. Haas, P. Alluri, A. Gan, and J. Bonneson (2015) Crash Prediction Method for Freeway Facilities with High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) Lanes. FDOT Contract BDV32-977-04.

Note: abbreviation used in figure: AADT = annual average daily traffic.

Figure 5. Chart. Variation of all crashes with annual average daily traffic for 10-lane freeways with high occupancy vehicle lanes from Florida study. ⁽¹⁹⁾

CHAPTER 3: SITE SELECTION

SELECTION OF STATES

Cross sections used for managed lanes vary. Some locations separate the managed lane(s) from general-purpose freeway lanes using an exclusive alignment or using barriers. Other locations use a buffer where the buffer consists of a flush area marked with pavement markings and in some cases with supplemental pylons. In many locations, the separation is only a lane line. For this evaluation, efforts were focused on identifying potential sites in the three Highway Safety Information System (HSIS) states with managed lanes (California, Minnesota, and Washington), and in Texas. Based upon the review of variables available within their crash database, the state of California was selected for the study. Data from Texas was also considered due to the availability of latitude and longitude values for many crashes and the use of pylons at several sites.

Highway Safety Information System Crash Data

California was selected for this study because the state uses a code (Location Type) that classifies crashes as being in the high occupancy vehicle (HOV) lane or the HOV buffer. The California HSIS documentation is available at:

<u>http://www.hsisinfo.org/guidebooks/california.cfm</u>. The most recent five years of data available for California was 2007 to 2011. A preliminary filtered dataset of select counties was developed. Table 3 provides the number of crashes within this dataset by code for location of collision. The availability of 15,257 crashes with the HOV code and 437 crashes with the HOV buffer code indicates that the California data can provide valuable insights into HOV (managed lane) related crashes.

Texas Data

The research team also queried the Texas Crash Records Information System for variables that can be used to identify HOV-specific crashes. In the case of Texas, whether the crash occurred on a segment with a managed lane could be assumed when HOV or Managed Lane is included in the variables Local_Use or Rpt_Street_Descr. Texas data offers additional details in extended fields (e.g. longitude, latitude) or as part of the narratives that would have to be obtained separately. The latitude and longitude information allowed the research team to quickly merge the crash and additional geometric data collected for specific sites. Because of the limited number of HOV-related crashes, the evaluation of the Texas data was limited to using all freeway crashes.

Location Type	Code	2007	2008	2009	2010	2011	Total
Does Not Apply	-	85	66	100	2	76	329
Unknown Type		11527	10159	9820	9969	10764	52239
Beyond Median Or Barrier Stripe - Driver's Left	А	208	161	194	181	255	999
Beyond Shoulder - Driver's Left	В	2455	2386	2296	2435	1941	11513
Left Shoulder Area	С	61	60	62	58	45	286
Left Lane	D	17185	14726	13951	15329	15965	77156
Interior Lanes	E	19716	18324	17864	18692	20130	94726
Right Lane	F	13280	12413	12104	12450	13538	63785
Right Shoulder Area	G	428	392	331	359	312	1822
Beyond Shoulder - Driver's Right	Н	2349	2173	2197	2295	2009	11023
Gore Area	Ι	39	34	22	14	25	134
Other	J	489	393	397	442	389	2110
HOV Lane	V	3603	2924	2710	3011	3009	15257
HOV Buffer	W	78	39	84	106	130	437
Grand Total	All	71503	64250	62132	65343	68588	331816

Table 3. California, number of crashes by location type for several counties.

Source: Texas A&M Transportation Institute

SELECTION OF SITES

With the quantity of managed lane sites available, decisions were needed to focus efforts so to improve the likelihood of identifying usable sites that fit the objective of this project. The following decisions were made during site selection:

- Focus on sites with one (rather than two) managed lane(s) per direction.
- Eliminate sites that have reversible operations.
- Select sites where the managed lane is operational 24 hours per day, seven days per week.
- Focus on locations with a flush buffer with or without pylons. In other words, eliminate sites with concrete barrier separation between the managed lane and the freeway general-purpose lanes.
- Seek sites that represent a range of buffer widths.

For Texas, segments on the following five freeways met the above criteria: I-635 and US 75 in Dallas and US 290, I-10, and US 59S in Houston. For California, a greater number of freeways met the above criteria; therefore, an additional criterion of being in or near the city of Los Angeles was added. The California study locations were on I-105, SR 134, I-210, and I-405. The Texas locations reflect both pylons and flush buffer segments and both Texas and California provide a mix of buffer widths and lane widths. The project requirements were to include a minimum of 12 sites. The research team identified these 18 corridors (nine freeways with each direction uniquely considered) in case some corridors had to be eliminated due to unexpected challenges with the crash data.

CHAPTER 4: DATA COLLECTION

DEFINING SEGMENTS

Segments were defined by the location of managed-lane access control change. A new segment would start when access was (or was not) permitted. Each segment was then defined as being managed lane weaving, ramp, or non-weaving segment. For this study only those segments that were non-weaving segments were included in the analysis. The objective of this project was on the effects of cross section dimensions on crashes. Because of limited number of sites with five, six, or seven general-purpose lanes within the preliminary datasets, those California sites were removed from the analysis resulting in the analysis considering crashes on freeways with three and four general-purpose lane freeways in California. For Texas, freeways with three to five general-purpose lanes were included.

The minimum length of segment for California was 0.11 miles with the majority of sites between 0.8 and 1.7 miles. The minimum length of segment for Texas was 0.12 miles, with the majority of sites between 0.9 and 1.4 miles.

After removing sites where weaving was expected, locations undergoing construction, and locations with no annual average daily traffic (AADT) data available, there were 128.0 miles in California (all 128.0 miles with flush buffers) and 60.4 miles in Texas (41.7 miles with pylon buffers and 18.7 miles with flush buffers).

VARIABLES

For each segment identified, the research team collected geometric characteristics using Google Earth, a software package that allows browsing and measuring satellite imagery. Since this package allows the user to compare satellite images taken at different points in time, the research team annotated the date of the earliest satellite image containing the same managed lane characteristics. In other words, the research team noted the earliest date when the managed lane characteristics matched. In most cases, the change reflected when the managed lane was added to the freeway. This step was done with the purpose of excluding any time period earlier than the date when the managed lane geometric characteristics changed.

Table 4 provides descriptions of the specific geometric variables considered for the analyses along with the average daily traffic variables. The research team gathered the information for the geometric variables by using the measurement tool available in Google Earth. These variables were selected because they have been shown in the literature to be potentially influential on freeway safety. The research team acquired the posted speed limit information by using the StreetView feature available in the Google Earth suite of tools.

Variable Name	Description
AADT	Annual average daily traffic for the freeway (vehicle/day)
AADTHV	Annual average daily traffic for the managed lane (vehicle/day)
AADTMainL	Annual average daily traffic for the general-purpose lanes (vehicle/day)
Buf_Type	Buffer type between managed lane and general-purpose freeway lanes – either pylons or flush
Buf_W	Buffer width (ft)
GP_Trvl_W	General-purpose lanes, travel width for general-purpose lanes, determined as number of lanes multiplied by average lane width (ft)
GP_Adj_W	General-purpose lanes, width of lane adjacent to the managed lane (ft)
GP_All_Ln_W	General-purpose lanes, width of all general-purpose lanes (ft)
GP_Avg_Ln W	General-purpose lanes, average lane width (ft)
GP_Ent	General-purpose lanes, number of entrance ramps within the segment
GP_Exit	General-purpose lanes, number of exit ramps within the segment
GP_NumLn	General-purpose lanes, number of general-purpose lanes that are not barrier separated and are moving in same direction
GP_R_Shld_W	General-purpose lanes, right shoulder width (ft)
GP_Weave	General-purpose lanes, number of weaving areas within the segment
ML_Env	Managed lane envelope, sum of left shoulder width, lane width, and buffer width (ft)
ML_L_Shld_W	Managed lane, left shoulder width (ft)
ML_Ln_W	Managed lane, lane width (ft)
PSL	Posted speed limit (miles per hour)
T_Trvl_W	Total travel width (ft)

 Table 4. Description of candidate variables.

Source: Texas A&M Transportation Institute

DATASET CHARACTERISTICS – GEOMETRICS

Table 5 provides geometric details for the segments being used in the evaluation.

All of the buffers for the California segments were flush (i.e., no pylons) with widths that varied between 1 ft and 12 ft. The buffers generally consisted of white and yellow lane line markings. The larger widths (9 or 12 ft) were associated with preserving space for a downstream managed lane ramp on I-405 as illustrated in Figure 6. I-405 also has narrow buffer widths. Several freeways have buffers with a 4-ft to 5-ft width as shown in Figure 7. Figure 8 shows another example of a wide buffer where a motorcycle is using the available space.

The buffers in Texas include flush buffers and flush buffers with pylons. The Texas sites with flush buffers ranged between 1.5 and 5.0 ft, while the buffers with pylons were between 4.0 and 6.0 ft. The buffer pavement markings in Texas use white lines. Figure 9 shows an example of pylons on a Texas freeway.

		0		<i>J</i>					-		
Dir	F or P	NW Length (mi)	SW- Min	SW- Avg	SW- Max	LW- Min	LW- Avg	LW- Max	BW- Min	BW- Avg	BW- Max
EB	F	9.44	8.5	10.8	13.0	10.5	10.9	11.5	4.5	4.8	5.0
WB	F	13.39	8.0	10.7	20.0	11.0	11.6	12.0	5.0	5.0	5.0
EB	F	8.07	1.0	3.5	15.0	10.8	11.2	12.0	1.5	1.5	1.5
WB	F	7.55	1.0	1.3	2.0	11.0	11.2	11.5	1.0	1.6	2.0
EB	F	19.13	1.0	7.0	20.0	11.0	11.3	12.0	2.5	3.2	5.0
WB	F	14.16	1.0	7.9	20.0	11.0	11.4	12.0	2.5	3.4	5.0
NB	F	29.7	1.0	4.0	33.0	10.0	10.7	11.5	1.0	2.6	12.0
SB	F	26.56	1.0	4.1	21.0	10.0	11.1	12.0	1.0	3.5	12.0
NB	Р	11.0	3.0	3.2	3.5	11.0	11.2	11.5	4.0	4.0	4.0
SB	Р	11.0	2.0	2.0	2.0	11.5	11.5	11.5	4.0	4.0	4.0
EB	Р	8.1	2.0	2.6	3.5	10.0	10.1	10.5	4.0	5.4	6.0
WB	Р	7.4	1.0	1.5	2.5	10.0	10.4	10.5	5.5	5.5	5.5
EB	Р	2.3	17.5	17.8	18.0	13.0	13.3	13.5	5.0	5.3	5.5
WB	Р	1.9	17.5	17.5	17.5	12.5	12.5	12.5	5.5	5.5	5.5
NB	F	7.3	10.0	11.8	13.0	11.0	11.4	12.0	1.5	3.7	5.0
SB	F	6.0	9.0	10.6	12.0	11.0	11.8	12.0	2.0	3.2	5.0
NB	F	2.2	1.5	2.3	4.0	10.5	10.8	11.5	1.5	1.5	1.5
SB	F	3.2	1.5	1.5	1.5	11.0	11.0	11.0	2.0	2.0	2.0
	EB WB EB WB NB SB NB SB EB WB EB WB EB WB SB NB SB NB	Diror PEBFWBFEBFWBFEBFWBFSBFSBPEBPWBPEBPWBFSBFNBFSBFNBFSBFNBFSBFNBF	F Length (mi) EB F 9.44 WB F 13.39 EB F 8.07 WB F 7.55 EB F 19.13 WB F 14.16 NB F 29.7 SB F 26.56 NB P 11.0 SB P 11.0 EB P 8.1 WB P 7.4 EB P 1.9 NB F 7.3 SB F 6.0 NB F 2.2	Bit For P NW Length (mi) SW- Min EB F 9.44 8.5 WB F 13.39 8.0 EB F 8.07 1.0 WB F 7.55 1.0 EB F 19.13 1.0 WB F 14.16 1.0 WB F 26.56 1.0 NB F 26.56 1.0 NB P 11.0 3.0 SB P 11.0 2.0 EB P 8.1 2.0 WB P 1.0 2.0 EB P 8.1 2.0 WB P 1.0 2.0 EB P 2.3 17.5 WB P 1.9 17.5 NB F 7.3 10.0 SB F 6.0 9.0 NB F 2.2 1.5 <td>DirF or PNW Length (mi)SW- MinSW- AvgEBF$9.44$$8.5$$10.8WBF13.39$$8.0$$10.7EBF8.07$$1.0$$3.5WBF7.55$$1.0$$1.3EBF19.13$$1.0$$7.0WBF14.16$$1.0$$7.9NBF29.7$$1.0$$4.0SBF26.56$$1.0$$4.1NBP11.0$$3.0$$3.2SBP11.0$$2.0$$2.0EBP8.1$$2.0$$2.6WBP7.4$$1.0$$1.5EBP2.3$$17.5$$17.8WBP1.9$$17.5$$17.5NBF7.3$$10.0$$11.8SBF6.0$$9.0$$10.6NBF2.2$$1.5$$2.3$</td> <td>DirF or PNW Length (mi)SW- MinSW- AvgSW- MaxEBF9.448.510.813.0WBF13.398.010.720.0EBF8.071.03.515.0WBF7.551.01.32.0EBF19.131.07.020.0WBF14.161.07.920.0WBF14.161.07.920.0NBF29.71.04.033.0SBF26.561.04.121.0NBP11.03.03.23.5SBP11.02.02.02.0EBP8.12.02.63.5WBP7.41.01.52.5EBP2.317.517.818.0WBP1.917.517.517.5NBF7.310.011.813.0SBF6.09.010.612.0NBF2.21.52.34.0</td> <td>DirF or PNW Length (mi)SW- MinSW- AvgSW- MaxLW- MinEBF9.448.510.813.010.5WBF13.398.010.720.011.0EBF8.071.03.515.010.8WBF7.551.01.32.011.0EBF19.131.07.020.011.0WBF14.161.07.920.011.0WBF26.561.04.121.010.0NBF26.561.04.121.010.0NBP11.03.03.23.511.0SBP11.02.02.63.510.0WBP7.41.01.52.510.0EBP2.317.517.818.013.0WBP1.917.517.512.5NNBF7.310.011.813.011.0SBF6.09.010.612.011.0NBF2.21.52.34.010.5</td> <td>Dir F NW (mi) SW- (mi) SW- Min SW- Avg SW- Max LW- Min LW- Avg EB F 9.44 8.5 10.8 13.0 10.5 10.9 WB F 13.39 8.0 10.7 20.0 11.0 11.6 EB F 8.07 1.0 3.5 15.0 10.8 11.2 WB F 7.55 1.0 1.3 2.0 11.0 11.2 EB F 19.13 1.0 7.0 20.0 11.0 11.3 WB F 14.16 1.0 7.9 20.0 11.0 11.4 NB F 29.7 1.0 4.0 33.0 10.0 10.7 SB F 26.56 1.0 4.1 21.0 10.0 11.1 NB P 11.0 2.0 2.6 3.5 10.0 10.4 BB P 2.3 17.5 17.8</td> <td>DirF or PNW Length (mi)SW- MinSW- AvgSW- MaxLW- MaxLW- AvgLW- MaxEBF9.448.510.813.010.510.911.5WBF13.398.010.720.011.011.612.0EBF8.071.03.515.010.811.212.0WBF7.551.01.32.011.011.211.5EBF19.131.07.020.011.011.312.0WBF14.161.07.920.011.011.412.0WBF29.71.04.033.010.010.711.5SBF26.561.04.121.010.011.112.0NBP11.03.03.23.511.011.211.5EBP8.12.02.63.510.010.110.5WBP7.41.01.52.510.010.410.5EBP2.317.517.818.013.013.313.5WBP1.917.517.512.512.512.5NBF7.310.011.813.011.011.412.0SBF6.09.010.612.011.011.412.0NBF2.21.52.34.0<td>Dir F NW (m) SW- (m) SW- Min SW- Avg SW- Max LW- Min LW- Avg LW- Max LW- Max BW- Max BW- Min EB F 9.44 8.5 10.8 13.0 10.5 10.9 11.5 4.5 WB F 13.39 8.0 10.7 20.0 11.0 11.6 12.0 5.0 EB F 8.07 1.0 3.5 15.0 10.8 11.2 12.0 1.5 WB F 7.55 1.0 1.3 2.0 11.0 11.2 11.5 1.0 EB F 19.13 1.0 7.0 20.0 11.0 11.3 12.0 2.5 WB F 14.16 1.0 7.9 20.0 11.0 11.4 12.0 2.5 NB F 29.7 1.0 4.0 33.0 10.0 10.1 1.5 1.0 SB F 26.56 1.0</td><td>Dir F NW (mi) SW- Min SW- Avg SW- Max LW- Min LW- Avg LW- Max LW- Max BW- Max BW- Min BW- Avg EB F 9.44 8.5 10.8 13.0 10.5 10.9 11.5 4.5 4.8 WB F 13.39 8.0 10.7 20.0 11.0 11.6 12.0 5.0 5.0 EB F 8.07 1.0 3.5 15.0 10.8 11.2 12.0 1.5 1.5 WB F 7.55 1.0 1.3 2.0 11.0 11.2 11.5 1.0 1.6 EB F 19.13 1.0 7.0 20.0 11.0 11.3 12.0 2.5 3.2 WB F 14.16 1.0 7.9 20.0 11.0 11.4 12.0 2.5 3.4 NB F 29.7 1.0 4.0 33.0 10.0 11.1 12.0</td></td>	DirF or PNW Length (mi)SW- MinSW- AvgEBF 9.44 8.5 10.8 WBF 13.39 8.0 10.7 EBF 8.07 1.0 3.5 WBF 7.55 1.0 1.3 EBF 19.13 1.0 7.0 WBF 14.16 1.0 7.9 NBF 29.7 1.0 4.0 SBF 26.56 1.0 4.1 NBP 11.0 3.0 3.2 SBP 11.0 2.0 2.0 EBP 8.1 2.0 2.6 WBP 7.4 1.0 1.5 EBP 2.3 17.5 17.8 WBP 1.9 17.5 17.5 NBF 7.3 10.0 11.8 SBF 6.0 9.0 10.6 NBF 2.2 1.5 2.3	DirF or PNW Length (mi)SW- MinSW- AvgSW- MaxEBF9.448.510.813.0WBF13.398.010.720.0EBF8.071.03.515.0WBF7.551.01.32.0EBF19.131.07.020.0WBF14.161.07.920.0WBF14.161.07.920.0NBF29.71.04.033.0SBF26.561.04.121.0NBP11.03.03.23.5SBP11.02.02.02.0EBP8.12.02.63.5WBP7.41.01.52.5EBP2.317.517.818.0WBP1.917.517.517.5NBF7.310.011.813.0SBF6.09.010.612.0NBF2.21.52.34.0	DirF or PNW Length (mi)SW- MinSW- AvgSW- MaxLW- MinEBF9.448.510.813.010.5WBF13.398.010.720.011.0EBF8.071.03.515.010.8WBF7.551.01.32.011.0EBF19.131.07.020.011.0WBF14.161.07.920.011.0WBF26.561.04.121.010.0NBF26.561.04.121.010.0NBP11.03.03.23.511.0SBP11.02.02.63.510.0WBP7.41.01.52.510.0EBP2.317.517.818.013.0WBP1.917.517.512.5NNBF7.310.011.813.011.0SBF6.09.010.612.011.0NBF2.21.52.34.010.5	Dir F NW (mi) SW- (mi) SW- Min SW- Avg SW- Max LW- Min LW- Avg EB F 9.44 8.5 10.8 13.0 10.5 10.9 WB F 13.39 8.0 10.7 20.0 11.0 11.6 EB F 8.07 1.0 3.5 15.0 10.8 11.2 WB F 7.55 1.0 1.3 2.0 11.0 11.2 EB F 19.13 1.0 7.0 20.0 11.0 11.3 WB F 14.16 1.0 7.9 20.0 11.0 11.4 NB F 29.7 1.0 4.0 33.0 10.0 10.7 SB F 26.56 1.0 4.1 21.0 10.0 11.1 NB P 11.0 2.0 2.6 3.5 10.0 10.4 BB P 2.3 17.5 17.8	DirF or PNW Length (mi)SW- MinSW- AvgSW- MaxLW- MaxLW- AvgLW- MaxEBF9.448.510.813.010.510.911.5WBF13.398.010.720.011.011.612.0EBF8.071.03.515.010.811.212.0WBF7.551.01.32.011.011.211.5EBF19.131.07.020.011.011.312.0WBF14.161.07.920.011.011.412.0WBF29.71.04.033.010.010.711.5SBF26.561.04.121.010.011.112.0NBP11.03.03.23.511.011.211.5EBP8.12.02.63.510.010.110.5WBP7.41.01.52.510.010.410.5EBP2.317.517.818.013.013.313.5WBP1.917.517.512.512.512.5NBF7.310.011.813.011.011.412.0SBF6.09.010.612.011.011.412.0NBF2.21.52.34.0 <td>Dir F NW (m) SW- (m) SW- Min SW- Avg SW- Max LW- Min LW- Avg LW- Max LW- Max BW- Max BW- Min EB F 9.44 8.5 10.8 13.0 10.5 10.9 11.5 4.5 WB F 13.39 8.0 10.7 20.0 11.0 11.6 12.0 5.0 EB F 8.07 1.0 3.5 15.0 10.8 11.2 12.0 1.5 WB F 7.55 1.0 1.3 2.0 11.0 11.2 11.5 1.0 EB F 19.13 1.0 7.0 20.0 11.0 11.3 12.0 2.5 WB F 14.16 1.0 7.9 20.0 11.0 11.4 12.0 2.5 NB F 29.7 1.0 4.0 33.0 10.0 10.1 1.5 1.0 SB F 26.56 1.0</td> <td>Dir F NW (mi) SW- Min SW- Avg SW- Max LW- Min LW- Avg LW- Max LW- Max BW- Max BW- Min BW- Avg EB F 9.44 8.5 10.8 13.0 10.5 10.9 11.5 4.5 4.8 WB F 13.39 8.0 10.7 20.0 11.0 11.6 12.0 5.0 5.0 EB F 8.07 1.0 3.5 15.0 10.8 11.2 12.0 1.5 1.5 WB F 7.55 1.0 1.3 2.0 11.0 11.2 11.5 1.0 1.6 EB F 19.13 1.0 7.0 20.0 11.0 11.3 12.0 2.5 3.2 WB F 14.16 1.0 7.9 20.0 11.0 11.4 12.0 2.5 3.4 NB F 29.7 1.0 4.0 33.0 10.0 11.1 12.0</td>	Dir F NW (m) SW- (m) SW- Min SW- Avg SW- Max LW- Min LW- Avg LW- Max LW- Max BW- Max BW- Min EB F 9.44 8.5 10.8 13.0 10.5 10.9 11.5 4.5 WB F 13.39 8.0 10.7 20.0 11.0 11.6 12.0 5.0 EB F 8.07 1.0 3.5 15.0 10.8 11.2 12.0 1.5 WB F 7.55 1.0 1.3 2.0 11.0 11.2 11.5 1.0 EB F 19.13 1.0 7.0 20.0 11.0 11.3 12.0 2.5 WB F 14.16 1.0 7.9 20.0 11.0 11.4 12.0 2.5 NB F 29.7 1.0 4.0 33.0 10.0 10.1 1.5 1.0 SB F 26.56 1.0	Dir F NW (mi) SW- Min SW- Avg SW- Max LW- Min LW- Avg LW- Max LW- Max BW- Max BW- Min BW- Avg EB F 9.44 8.5 10.8 13.0 10.5 10.9 11.5 4.5 4.8 WB F 13.39 8.0 10.7 20.0 11.0 11.6 12.0 5.0 5.0 EB F 8.07 1.0 3.5 15.0 10.8 11.2 12.0 1.5 1.5 WB F 7.55 1.0 1.3 2.0 11.0 11.2 11.5 1.0 1.6 EB F 19.13 1.0 7.0 20.0 11.0 11.3 12.0 2.5 3.2 WB F 14.16 1.0 7.9 20.0 11.0 11.4 12.0 2.5 3.4 NB F 29.7 1.0 4.0 33.0 10.0 11.1 12.0

Table 5. Range of managed lane envelope geometric data by corridor.

Notes on column headings:

- Hwy = State and highway number.
- Dir = direction, where NB = northbound; SB = southbound; EB = eastbound; WB = westbound
- F or P: F=flush buffer and P=pylons present within buffer area.
- NW Length = sum of the lengths for non-weaving segments within the corridor.
- SW = shoulder width (ft), LW = lane width (ft), BW = buffer width (ft).
- Min = minimum width for the highway direction.
- Avg = average width for the highway direction.
- Max = maximum width for the highway direction.

Source: Texas A&M Transportation Institute

Source: Google Earth

Figure 6. Graphic. Example of wide buffers on California I-405.

Source: Texas A&M Transportation Institute

Figure 7. Graphic. Example of wide buffer in California.

Source: Texas A&M Transportation Institute

Figure 8. Graphic. Another example of wide buffer, note motorcycle using the buffer area.

Source: Texas A&M Transportation Institute

Figure 9. Graphic. Example of pylons in buffer on Texas freeway.

DATASET CHARACTERISTICS – CRASHES

Texas Crash Data

Table 6 shows the number of crashes identified for each corridor in Texas, including all levels of severity. The number of crashes per year seems consistently increasing at each site, except for sites TX-DA-075[P] and TX-DA-635[P] where year 2009 shows atypically high and low counts, respectively. In the case of TX-DA-075[P], it appears to have been a rare year; in the case of TX-DA-635[P], however, the research team verified that during 2009, geometric characteristics of the managed lanes could not be verified for 11 out of the 20 segments within this site and therefore crashes for those segments are not represented in Table 6. Cells denoting "NA" indicate that no data was available for that corresponding site and year due to construction or a different cross section.

Site	Dir	Non-Weaving Length (mi)	Crash Type	2009	2010	2011	2012	2013	2014	Total
TX-DA-075[P]	NB	11.0	Total	404	304	347	397	347	380	2179
TX-DA-075[P]	SB	11.0	Total	363	277	329	350	306	351	1976
TX-DA-635[P]	EB	8.1	Total	82	180	208	189	204	257	1120
TX-DA-635[P]	WB	7.4	Total	153	242	261	226	213	267	1362
TX-HO-010[P]	EB	2.3	Total	25	57	57	41	75	86	341
TX-HO-010[P]	WB	1.9	Total	0	15	23	22	21	15	96
TX-HO-059[F]	NB	7.3	Total	112	112	90	113	101	90	618
TX-HO-059[F]	SB	6.0	Total	113	91	89	116	95	89	593
TX-HO-290[F]	NB	2.2	Total	NA	NA	NA	11	43	35	89
TX-HO-290[F]	SB	3.2	Total	NA	NA	NA	20	65	62	147
Grand Total	Both	60.4	Total	1252	1278	1404	1485	1470	1632	8521
TX-DA-075[P]	NB	11.0	HOV/ML	0	0	2	0	1	8	11
TX-DA-075[P]	SB	11.0	HOV/ML	0	3	2	0	2	7	14
TX-DA-635[P]	EB	8.1	HOV/ML	0	1	0	0	1	2	4
TX-DA-635[P]	WB	7.4	HOV/ML	0	1	1	2	2	2	8
TX-HO-010[P]	EB	2.3	HOV/ML	0	1	1	0	1	1	4
TX-HO-010[P]	WB	1.9	HOV/ML	0	0	0	0	0	0	0
TX-HO-059[F]	NB	7.3	HOV/ML	0	0	1	0	0	0	1
TX-HO-059[F]	SB	6.0	HOV/ML	0	0	0	0	0	0	0
TX-HO-290[F]	NB	2.2	HOV/ML	NA	NA	NA	0	0	0	0
TX-HO-290[F]	SB	3.2	HOV/ML	NA	NA	NA	1	1	3	5
							3	8		

Table 6. Texas, number of crashes.

NA = not applicable because a different freeway configuration was present prior to 2012 Notes on columns:

- Site = TX-YY-###[Z], where TX = Texas; YY = city, with DA = Dallas and HO = Houston; XXX = highway number; Z = buffer type with F = flush buffer and P = flush buffer with pylons.
- Dir = direction, where NB = northbound; SB = southbound; EB = eastbound; WB = westbound
- Non-Weaving Length = sum of the lengths for non-weaving segments within the corridor.
- Crash Type, either high occupancy vehicle or managed lane (HOV/ML) (HOV or managed lane related crashes) or Total (all managed lane, buffer, or general-purpose-lane crashes on the freeway).
- 2009, 2010, 2011, 2012, 2013, and 2014 = number of crashes in the given year.
- Total = total number of crashes in the 2009-2014 time period.

Source: Texas A&M Transportation Institute

From this pool of crashes, the research team identified those that had an annotation of "HOV" or "MANAGED" lane resulting in identifying only 47 crashes. The distribution of these crashes is shown in Table 6. The research team suspects that this table may not include every HOV (or managed lane) crash, since these crashes were identified using annotation fields, instead of coded fields (as is the case in the California data). Since this is a very limited subset, the research team only conducted formal evaluations on total crashes.

California Crash Data

The research team matched the crash records obtained from HSIS to the mile post limits of the segments identified from satellite imagery. Crashes and traffic characteristics for the four routes

selected for analysis were also obtained. The HSIS has AADT data that reflects number of vehicles for both directions on the freeway. The data were matched utilizing the route and county number along with beginning and ending milepost identified for each segment.

AADT counts are also available from the California Department of Transportation Performance Measurement System. This database is available online and provides information regarding the performance of California highways. Through a query on the website, a performance analysis report for each highway was generated. A report was made for the length of the highway in each direction from the years 2007 through 2011. The report includes information regarding the day, hour of the day, mile post where sensor is located, freeway number and direction, and several different methods to calculate AADT to account for missing data from the sensor. The data for HV (abbreviation used for HOV or managed lanes) were used in the analysis with managed-lane crashes.

Table 7 shows the number of managed-lane crashes (i.e., those crashes with a location type code of V (HOV lane) or W (HOV buffer) identified for each corridor in California, including all levels of severity. The top half of Table 7 lists the number of total freeway crashes by highway corridor. The length shown in the table corresponds to the sum of the non-weaving segment lengths included in the dataset. The yearly number of crashes per year seems consistent within each corridor with a general upward trend over time. The year of 2007 frequently has fewer crashes because it does not always reflect a full 12-month of data due to changes in managed-lane cross sections.

Highway Number	Dir	Non-Weaving Length (mi)	Crash Type	2007	2008	2009	2010	2011	Total
105	EB	9.4	Total	147	313	308	302	322	1392
105	WB	13.4	Total	138	300	279	310	301	1328
134	EB	8.1	Total	102	267	282	304	268	1223
134	WB	7.6	Total	74	250	269	260	262	1115
210	EB	19.1	Total	125	484	517	598	592	2316
210	WB	14.2	Total	94	415	374	445	496	1824
405	NB	29.7	Total	958	1154	1069	1097	1268	5546
405	SB	26.6	Total	383	1061	990	1066	1144	4644
Grand Total	Both	128.0	Total	2021	4244	4088	4382	4653	19388
105	EB	9.4	MLB	13	28	36	24	33	134
105	WB	13.4	MLB	16	33	23	24	21	117
134	EB	8.1	MLB	14	29	18	29	23	113
134	WB	7.6	MLB	4	14	18	18	24	78
210	EB	19.1	MLB	15	57	60	60	84	276
210	WB	14.2	MLB	21	43	50	51	67	232
405	NB	29.7	MLB	104	119	111	99	115	548
405	SB	26.6	MLB	40	115	115	108	119	497
Grand Total	Both	128.0	MLB	227	438	431	413	486	1995

Table 7. California, number of crashes.

Notes on columns:

• Dir = direction, where NB = northbound; SB = southbound; EB = eastbound; WB = westbound

• Non-Weaving Lengths = sum of the lengths for non-weaving segments within the corridor.

• Crash type, either MLB (managed lane or buffer related crashes) or Total (all managed lane, buffer, or general-purpose-lane crashes on the freeway).

• 2007, 2008, 2009, 2010, 2011 = number of crashes in the given year. Note that 2007 frequently included less than a full 12 months of crashes due to changes in the managed lane cross section.

• Total = total number of crashes in the 2007-2011 time period.

Source: Texas A&M Transportation Institute

CHAPTER 5: ANALYSIS

STATISTICAL MODEL / METHODOLOGY

Because more than one time period from each site was used as an analysis unit, the statistical methodology had to consider the grouping structure in the data in an explicit manner. Generalized Linear Mixed models can account for such a structure, as well as handling fixed effects, the type of parametric estimation expected to yield answers to the research questions. These models are constructed under the assumption that crashes at study sites for a given time period follow a given probability distribution. Depending on the dispersion of a particular subset of data, this work utilized Poisson or Negative Binomial distributions.

In the case of the Poisson log-linear mixed effects model, the probability distribution is as shown in

$$P(N_i = n_{ij}) = \frac{\lambda_i^{n_{ij}}}{n_{ij}!} \cdot e^{-\lambda_i}$$

Figure 10.

$$P(N_i = n_{ij}) = \frac{\lambda_i^{n_{ij}}}{n_{ij}!} \cdot e^{-\lambda_i}$$

Figure 10. Equation. Probability distribution.

Where:

 N_i = Number of crashes at one analysis period at the ith site. n_{ij} = An actual count of crashes for the jth analysis period at the ith site, such that $n_{ij} \in \{0, Z^+\}$.

 λ_i = Poisson distribution parameter at the ith site.

The expected number of crashes at the ith site is simply $E(N_i) = \lambda_i$ for the Poisson distribution.

Although most time periods were one-year long, the methodology allows the incorporation of partial years, as this variable is handled as exposure in a way similar to segment length. The exposure variables in the model are defined as the product of the time period length (expressed in years) and the segment length (expressed in miles) for each record in the database. This quantity has units of mile-years (mi-yr). For a given segment-period with amount of exposure γ , a model can be developed as shown in $\lambda_i = \gamma \cdot \vartheta_i$

Figure 11.

$$\lambda_i = \gamma \cdot \vartheta_i$$

Figure 11. Equation. Initial equation.

Where:

 ϑ_i has units of crashes/mi-yr.

Since $\gamma = 1.0$ when segment length = one mile, and period length = one year, ϑ_i can be estimated by regression techniques, such that the interpretation of the results are in terms of the change in expected yearly crashes per mile corresponding to changes in the critical observed variables.

The exponential function is used to parameterize the quantity ϑ_i so that it links crash counts from each site to a corresponding set of critical observed variables. The Equation in $\vartheta_i = AADT^{\alpha} \cdot RE_i \cdot exp(X^T \cdot \beta)$

Figure 12 shows the relationship for the ith site.

$$\vartheta_i = AADT^{\alpha} \cdot RE_i \cdot \exp(\mathbf{X}^T \cdot \boldsymbol{\beta})$$

Figure 12. Equation. Equation with crashes per mile-year for ith site.

Where:

AADT = Annual average daily traffic (vehicle/day).

- α = Fixed exponent.
- X = Vector of fixed effects (i.e., explanatory variables).
- β = Vector of fixed-effects coefficients.

 RE_i = Random effect for ith site.

All other variables as previously defined.

As indicated by the sub-index, the model computes a unique RE_i for each site i. The distribution of all RE_i should roughly be log-normal in the scale of crash counts, a characteristic that was verified after model estimations.

$$\vartheta = AADT^{\alpha} \cdot \exp\left(\mu_{\ln(RE)} + \frac{\sigma^2_{\ln(RE)}}{2}\right) \cdot \exp(\mathbf{X}^T \cdot \boldsymbol{\beta})$$

Figure 13. Equation. Equation with model random effect distribution.

Where:

 ϑ = is the expected yearly crashes per mile, given AADT and the variables represented in X.

The statistical analysis estimates the quantities $\mu_{\ln(RE)}$ and $\sigma^2_{\ln(RE)}$ from the site random effects variability alongside the coefficients for the fixed effects (i.e., α and β). The quantity ϑ represents the expected number of crashes per amount of exposure at any site. The next section reviews results from estimating the model from the methodology just described.

OVERVIEW OF VARIABLES CONSIDERED

Initially, variables were selected based on the findings of previous studies along with the variables that define exposure. These initial model variables included either the managed lane components as unique variables (e.g., buffer width, managed lane width, left shoulder width) or as a combined unit (e.g., shoulder, lane, and buffer widths added into a managed lane envelope width variable). For the general-purpose lanes, variables such as number of lanes, lane width

(average and per lane values), right shoulder width, number of entrance ramps, and number of exit ramps within the segment were investigated. Later explorations replaced number of lanes and average lane width with total freeway width, as this variable is a compound of the previous two. The use of these combinations was intended to overcome the modeling challenges that handling highly correlated variables impose. In the case of this research, the widths of left shoulder, managed lane, and buffer tended to vary together. In other words, at sites where one of these variables is wide, the other two variables tended to be wider as well.

MODELS ON FREEWAY CRASHES – CALIFORNIA

All Severity Levels Crashes

For California, the best model where all the key cross-section variables are present is shown in Table 8. This model is a reference point to observe the trends of each variable, after accounting for the effects of other cross-sectional variable. Fewer crashes are expected when the travel width of the general-purpose lanes is greater because there is more space for vehicles to spread out. The managed lane envelope – which includes the left shoulder width, the managed lane width, and the buffer width – also has an inverse relationship between crashes and width, as expected. The relationship was found statistically significant. Wider envelopes are associated with fewer freeway crashes, a reduction of 2.2 percent in crashes (1-exp(-0.02222)) per additional foot of envelope width.

Variable ^a	Estimate	Standard Error	z value	$\Pr(> z)^{b}$	Significance ^c
(Intercept)	-12.62701	2.69282	-4.68900	0.00000	***
log(AADT/2)	1.42194	0.22981	6.18700	0.00000	***
ML_Env	-0.02222	0.00515	-4.31600	0.00002	***
GP_Trvl_W	-0.00327	0.01106	-0.29600	0.76700	
GP_R_Shld_W	0.01215	0.00927	1.31000	0.19000	
GP_Exit	-0.05070	0.05412	-0.93700	0.34900	
GP Ent	0.01478	0.04664	0.31700	0.75100	

Table 8. California, preliminary model for total freeway crashes (all severities).

^a Variables are described in Table 4.

^b P values reported.

^c Significance values are as follows: blank cell = not significant; $\sim p < 0.10$; * = p < 0.05; ** = p < 0.01; and *** = p < 0.001.

Source: Texas A&M Transportation Institute

A reduced model derived from Table 8 was fitted to exclude variables that are not significantly related to total crashes. This result is shown in Table 9. The results of interest are practically unchanged; a reduction of 2.0 percent in crashes per additional foot of envelope width is shown.

Variable ^a	Estimate	Standard Error	z value	$\Pr(z)^{b}$	Significance ^c
(Intercept)	-12.442053	2.666415	-4.666000	0.000003	***
log(AADT/2)	1.397905	0.225244	6.206000	0.000000	***
ML_Env	-0.020306	0.005014	-4.050000	0.000051	***

 Table 9. California, refined model for total freeway crashes (all severities).

^a Variables are described in Table 4.

^b P values reported.

^c Significance values are as follows: blank cell = not significant; $\sim p < 0.10$; * = p < 0.05; ** = p

< 0.01; and *** = p < 0.001.

Source: Texas A&M Transportation Institute

Next, the managed lane envelope was split in an effort to investigate if the shoulder, lane, or buffer is more influential with respect to total freeway crashes. Managed lane width became the only significant variable in addition to AADT. The correlation between buffer and left shoulder width (wider buffers are typically present when wider left shoulders are present) is believed to be affecting the significance of those estimates, and potentially others in the model.

In summary, the review of total crashes on California freeways indicates that wider managed lane envelopes are associated with fewer freeway crashes. Additional insight into how the components of the managed lane envelope are affecting freeway crashes is not possible with the available dataset and under the current methodology. An alternative approach was explored, as described in the following section.

All Severity Levels Crashes – Proportion of Crashes

To continue to explore the potential influence of buffer width on total crashes, a model was evaluated where the proportion of managed-lane crashes to total crashes was the response variable. It is expected that this proportion (modeled as a binomial variable) may capture safety differences associated with differences in the freeway cross section elements. The initial results proved promising, yet a test on the residuals showed moderate overdispersion. This condition affects the standard error of the regression estimates and must be considered. The likelihood of the model was adjusted to represent a quasibinomial distribution (i.e., explicitly correcting for extra-binomial dispersion). The adjusted model is shown in Table 10. This model demonstrates that both the width of the managed lane and the width of the buffer are significant in affecting the proportion of managed-lane crashes with the lane width being the more influential factor.

Variable ^a	Estimate	Standard Error	Degrees of Freedom	t-value	p-value ^b	Significance ^c
(Intercept)	0.41295	0.92882	457	0.44460	0.65680	
AADTMainL	-0.00001	0.00000	457	-2.66276	0.00800	**
AADTHV	0.00004	0.00001	457	4.75961	0.00000	***
ML_L_Shld_W	0.00084	0.01091	112	0.07676	0.93900	
ML_Ln_W	-0.20982	0.07266	112	-2.88761	0.00470	**
Buf_W	-0.11736	0.03370	112	-3.48293	0.00070	***
GP_Trvl_W	-0.00342	0.00637	112	-0.53766	0.59190	
GP_R_Shld_W	0.00776	0.00980	112	0.79257	0.42970	
GP_Exit	0.02081	0.04676	112	0.44501	0.65720	
GP_Ent	0.06890	0.04216	112	1.63419	0.10500	

 Table 10. California, preliminary model of proportion of managed lane or buffer crashes to total freeway crashes (all severities).

^a Variables are described in Table 4.

^b P values reported.

^c Significance values are as follows: blank cell = not significant; $\sim p < 0.10$; * = p < 0.05; ** = p

< 0.01; and *** = p < 0.001.

Source: Texas A&M Transportation Institute

When reducing this model to its most parsimonious form, the results are virtually unchanged for buffer and managed lane width as shown in Table 11. The interpretation of these results is as follows: given that a crash has occurred on a freeway containing a single managed lane and a flush buffer, the odds of that crash being related to the managed lane or the buffer decrease by a factor of 0.77 (exp(-0.2057645)) with each additional foot of width in the managed lane. Similarly, the odds of a crash being related to the managed lane or buffer decrease by a factor of 0.89 (exp(-0.116574)) with each additional foot of width in the flush buffer.

 Table 11. California, refined model of proportion of managed lane to total freeway crashes (all severities).

Variable ^a	Estimate	Standard Error	Degrees of Freedom	t-value	p-value ^b	Significance ^c
(Intercept)	0.32720	0.86727	457	0.37727	0.70610	
AADTMainL	-0.00001	0.00000	457	-2.94195	0.00340	**
AADTHV	0.00004	0.00001	457	4.81206	0.00000	***
ML_Ln_W	-0.20576	0.07240	116	-2.84188	0.00530	**
Buf_W	-0.11657	0.02396	116	-4.86441	0.00000	***
GP_Ent	0.08092	0.03668	116	2.20598	0.02940	*

^a Variables are described in Table 4.

^b P values reported.

^c Significance values are as follows: blank cell = not significant; $\sim p < 0.10$; * = p < 0.05; ** = p

< 0.01; and *** = p < 0.001.

Source: Texas A&M Transportation Institute

Fatal and Injury Crashes

The results from the analysis with fatal and injury only California crashes are shown in Table 12. Similar to all severity levels, the managed lane envelope has a negative association with fatal and

injury crashes. However, this relationship did not prove statistically significant. In fact, AADT proved the only significant term in this evaluation.

Variable ^a	Estimate	Standard Error	z value	$Pr(z)^{b}$	Significance ^c
(Intercept)	-8.74762	3.258788	-2.684	0.00727	**
log(AADT/2)	0.792165	0.275917	2.871	0.00409	**
ML_Env	-0.0076	0.005275	-1.441	0.14951	
T_Trvl_W	0.012816	0.011586	1.106	0.26868	
GP R Shld W	0.006659	0.008987	0.741	0.45872	

 Table 12. California, preliminary model for total freeway crashes (fatal and injury severity levels).

^a Variables are described in Table 4.

^b P values reported.

^c Significance values are as follows: blank cell = not significant; $\sim p < 0.10$; * = p < 0.05; ** = p < 0.01; and *** = p < 0.001.

Source: Texas A&M Transportation Institute

Similar to all severity levels, an evaluation was conducted on the proportion of the managed-lane related fatality and injury crashes to freeway fatality and injury crashes. When the managed lane characteristic is represented as an envelope, it is significant (see Table 13); when the envelope is separated into the three components (left shoulder width, lane width, and buffer width) none of the widths are significant. The reason for this result, however, is expected. The resulting coefficients are correlated because the variables are collinear in the dataset. This is a condition resulting from a large overlap between the range of the variables, and thus the estimation of independent effects is greatly limited.

Table 13. California, proportion of managed lane to total freeway crashes (fatal and injury severity levels).

Variable ^a	Estimate	Standard Error	z value	$Pr(> z)^{b}$	Significance ^c
(Intercept)	-0.96236	0.24899	-3.865	0.000111	***
ML_Env	-0.0331	0.01287	-2.572	0.01012	*

^a Variables are described in Table 4.

^b P values reported.

^c Significance values are as follows: blank cell = not significant; $\sim p < 0.10$; * = p < 0.05; ** = p

< 0.01; and *** = p < 0.001.

Source: Texas A&M Transportation Institute

MODELS ON MANAGED-LANE RELATED CRASHES – CALIFORNIA

All Severity Levels Crashes

An evaluation was also performed on the crashes that were coded as being on the managed lane or on the buffer. The refined model that only includes the significant variables is shown in Table 14. All three components of the managed lane envelope – left shoulder width, lane width, and buffer width – are significant along with the volume in the managed lane (AADTHV). The coefficients indicate that the lane width is the most influential followed by the buffer width. Per this model, changes in left shoulder width are not as influential in the number of managed-lane related crashes as changes in the buffer or lane width.

Variable ^a	Estimate	Standard Error	z value	$\Pr(> z)^{b}$	Significance ^c
(Intercept)	1.1378	1.89107	0.602	0.54739	
log(AADTHV)	0.50131	0.14646	3.423	0.00062	***
ML_L_Shld_W	-0.03723	0.01456	-2.557	0.01055	*
ML_Ln_W	-0.39154	0.1063	-3.684	0.00023	***
Buf_W	-0.07717	0.04559	-1.693	0.09049	~

Table 14. California, refined model for managed-lane related crashes (all severity levels).

^a Variables are described in Table 4.

^b P values reported.

^c Significance values are as follows: blank cell = not significant; $\sim p < 0.10$; * = p < 0.05; ** = p

< 0.01; and *** = p < 0.001.

Source: Texas A&M Transportation Institute

Fatal and Injury Crashes

When only considering fatal and injury severity level managed-lane related crashes, the benefits of the buffer are no longer statistically significant as shown in Table 15. Only the effect of left shoulder is significant, when simultaneously accounting for the other elements of the envelope and AADTHV.

When representing the managed lane elements with the envelope, the resulting model is shown in Table 16. Results indicate that each additional foot of envelope is associated with a 4.4 percent reduction in managed lane and buffer related crashes (1-exp(-0.04471)).

Variable ^a	Estimate	Standard Error	z value	Pr(> z) ^b	Significance ^c
(Intercept)	-1.81462	3.15819	-0.575	0.5656	
log(AADTHV)	0.31661	0.24558	1.289	0.1973	
ML_L_Shld_W	-0.04827	0.02517	-1.918	0.0551	~
ML_Ln_W	-0.14191	0.16419	-0.864	0.3874	
Buf_W	-0.01444	0.07524	-0.192	0.8478	

Table 15. California, initial model for managed-lane related crashes (fatal and injury severity levels).

^a Variables are described in Table 4.

^b P values reported.

^c Significance values are as follows: blank cell = not significant; $\sim p < 0.10$; * = p < 0.05; ** = p

< 0.01; and *** = p < 0.001.

Source: Texas A&M Transportation Institute

Table 16. California, refinded model for managed-lane related crashes (fatal and injury severity levels).

Variable ^a	Estimate	Standard Error	z value	$\Pr(> z)^{b}$	Significance ^c
(Intercept)	-3.18242	2.26283	-1.406	0.159609	
log(AADTHV)	0.35491	0.24097	1.473	0.140801	
ML_Env	-0.04471	0.01271	-3.518	0.000435	***

^a Variables are described in Table 4.

^b P values reported.

^c Significance values are as follows: blank cell = not significant; $\sim p < 0.10$; * = p < 0.05; ** = p

< 0.01; and *** = p < 0.001.

Source: Texas A&M Transportation Institute

MODELS ON FREEWAY CRASHES – TEXAS

All Severity Levels Crashes

Similar to California, the research team used several variables for the initial model of total Texas freeway crashes (all severity levels). The results are shown in Table 17. Also similar to California, several variables expected to be significant were not significant (e.g., number of general-purpose lanes) or were counterintuitive (team expected number of crashes to increase rather than decrease as the number of general-purpose entrance ramps increase; however, this relationship was not significant). Because the segments were created to focus on managed lane segments with no access openings, the relationship of crashes to the characteristics present on the neighboring general-purpose lanes would need additional exploration to be able to explain the potential relationships between crashes and those roadway geometric variables. That effort is beyond the scope of this project. If using a 0.10 significance level, the results indicates that more crashes are expected with the presence of pylons. Whether these crashes are occurring at low speed (e.g., a driver attempting to move into or out of the managed lane to avoid congestion) or at high speed cannot be explored with this dataset.

Removing the non-significant variables result in the refined model shown in Table 18. Fewer crashes are expected for wider managed lane envelopes (similar to California). A reduction of 2.8 percent in crashes per additional foot of envelope width is expected (1-exp(-0.02808)).

Variable ^a	Estimate	Standard Error	z value	$Pr(z)^{b}$	Significance ^c
(Intercept)	-1.93794	8.33268	-0.233	0.8161	
log(AADT/2)	0.23344	0.1274	1.832	0.0669	~
GP_NumLn	0.1873	0.19885	0.942	0.3462	
GP_Avg_Ln_W	0.39886	0.33511	1.19	0.234	
GP_R_Shld_W	-0.02831	0.09133	-0.31	0.7566	
GP_Ent	-0.27919	0.17824	-1.566	0.1173	
GP_Exit	-0.04871	0.14623	-0.333	0.7391	
PSL	-0.0234	0.11045	-0.212	0.8322	
ML_Env	-0.07842	0.03365	-2.33	0.0198	*
Buf_Type=Pylons	0.92177	0.51824	1.779	0.0753	~

Table 17. Texas, initial model for total freeway crashes (all severity levels).

^a Variables are described in Table 4.

^b P values reported.

^c Significance values are as follows: blank cell = not significant; $\sim p < 0.10$; * = p < 0.05; ** = p

< 0.01; and *** = p < 0.001.

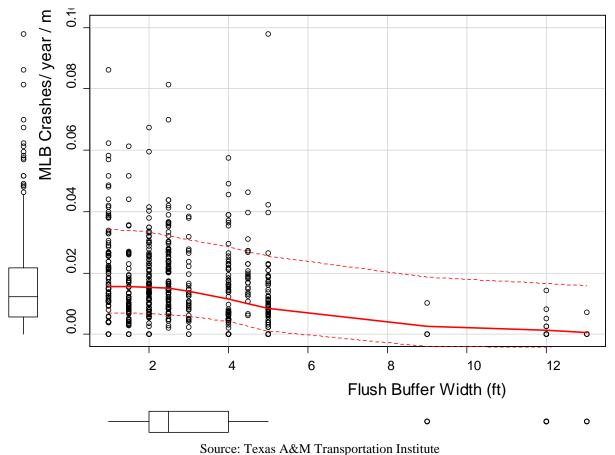
	,		•		•
Variable ^a	Estimate	Standard Error	z value	$\Pr(> z)^{b}$	Significance ^c
(Intercept)	0.42185	1.45744	0.289	0.77224	
log(AADT/2)	0.23482	0.12755	1.841	0.06563	~
ML_Env	-0.02808	0.01603	-1.752	0.07979	~
Buf_Type=Pylons	0.66049	0.22595	2.923	0.00346	**

Table 18. Texas, refined model for total freeway crashes (all severity levels).

^a Variables are described in Table 4.

^b P values reported.

^c Significance values are as follows: blank cell = not significant; $\sim p < 0.10$; * = p < 0.05; ** = p


< 0.01; and *** = p < 0.001.

Source: Texas A&M Transportation Institute

A CLOSER LOOK AT BUFFER WIDTHS

Designing managed lane facilities requires several decisions, including whether to meet agency typicals or to accept a practical design that deviates from a set of guidelines. One of those decisions is in the buffer width between a general-purpose lane and the managed lane. For many years the convention was to have at least a 4-ft buffer. Practitioners are now considering buffer widths of less than 4 ft and there is indication that some may be considering adopting a typical buffer width of 2 ft. The datasets available within this project were examined to gain insights on potential crash differences between buffers with about a 2 ft width and buffers that are about 4 ft in width.

Figure 14 shows the managed lane and buffer crashes in California as a rate of crashes per year per mile per 1000 vehicles per day. The solid line on the graph is a trend line for the data with the dashed lines representing a confidence interval. For buffer widths of 1.0, 1.5, 2.0, and 2.5 ft, a similar crash rate is present. For buffer widths of 3 ft or larger, the trend shows fewer crashes with greater decreases in the crash rate as the buffer width increases. An attempt was made to quantify the trend in Figure 14, but the strong correlation of the buffer width, managed lane

width, and left shoulder width resulted in strongly correlated estimates, and thus unreliable estimates for these variables.

Source. Texas recut Transportation institute

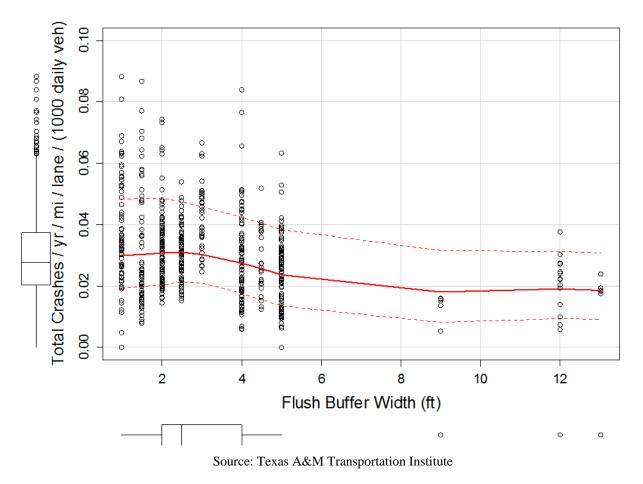

Figure 14. Chart. California, managed lane and buffer crashes by buffer width.

Figure 14 graphs the managed lane and buffer crash rate. To also consider the crashes on general-purpose freeway lanes, Figure 15 (California) and Figure 16 (Texas) were created. Figure 15 illustrates the per lane crash rate for all freeway crashes within the California dataset. Like the findings for managed lane crashes (shown in Figure 14), the per lane crash rates are similar for buffers less than 3 ft. For buffer widths of 4 ft and greater, the trend shows lower crash rates.

The data for flush buffers in Texas (see Figure 16) show a similar trend of higher crash rates for the more narrow buffers (defined in this dataset as being 2 ft and less) as compared to wider buffers (5 ft, for the Texas dataset). Figure 16 also shows the trend for sites with pylons. When pylons are used, the buffer width is always 4 ft or more. The trend line indicates that pylons used with 6-ft buffers have fewer freeway crashes per lane; however, few sites had the 6 ft buffer. Additional sites are needed to form a strong conclusion regarding the relationship between crashes and the width of buffers with pylons. In addition, the crash dataset used for this analysis

Note: MLB = managed lane or buffer related crashes, mi = mile, veh = vehicle, ft = feet.

included all freeway lanes. Preference would be to use a dataset that only includes crashes on the lanes on either side of the pylons. Given that the Texas crash dataset does not identify the lane for the crash, a research study that uses a crash narrative-review approach would be needed. The data in Figure 16 do show a higher crash rate for sites with pylons in the buffer as compared to sites with a 5-ft flush buffer. This relationship was found to be statistically significant (see Table 18).

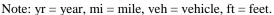
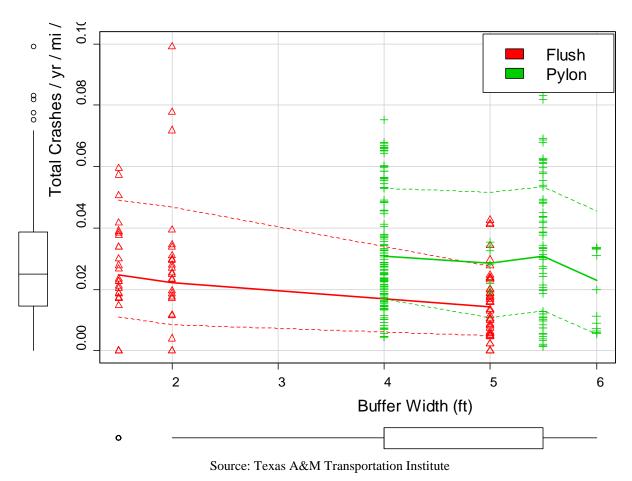



Figure 15. Chart. California, freeway crashes by buffer width.

Note: yr = year, mi = mile, veh = vehicle, ft = feet.

Figure 16. Chart. Texas, freeway crashes by buffer width and presence of pylons (triangles for flush buffers without pylons and dashes for buffers with pylons).

CHAPTER 6: SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS FOR FUTURE RESEARCH

SUMMARY

The managed lanes included in this study are designated freeway lanes separated by a buffer and located to the left of the general-purpose lanes. Managed lanes are intended to provide faster travel speeds and better reliability than the adjacent general-purpose lanes. Questions are being asked on whether the improved operations and the potentially additional buffer separation distances are associated with more or less crashes. This study investigated the relationship between crashes and buffer-separated manage lane dimensions.

The findings from the safety literature are clear in that reduction in a freeway left shoulder width is associated with increased number of crashes (see, for example, Figure 3). Safety studies for general-purpose freeway lanes also have found that reduction in lane width is associated with more crashes (see, for example, Figure 2). Previous research has provided the following safety relationships for freeways and managed lanes:

- Crash prediction equations are available in the *Highway Safety* Manual ⁽¹⁶⁾ for freeways.
- A Florida study ⁽¹⁹⁾ developed crash prediction equations for freeways facilities with high occupancy vehicle (HOV) and high occupancy toll (HOT) lanes for 6-, 8-, 10-, and 12-lane freeways (number of lanes reflect both directions and include the managed lanes). Significant variables were segment length, annual average daily traffic (AADT), and in most cases, left shoulder width. The effect of buffer type on crashes was found to be statistically significant only in the model for 10-lane freeways with an inclusion of a 2- to 3-ft buffer being associated with fewer fatal and injury crashes.
- The increase in crashes associated with reductions in freeway lane and shoulder widths may be offset if the reductions are done to increase the number of freeway lanes. A Texas study ⁽¹⁸⁾ developed a methodology and spreadsheet that can be used to evaluate the tradeoffs.
- Freeway access points are common sites for crashes, just as crashes can commonly be found at intersections on surface streets. A California study ^(1, 2) using eight routes concluded that limited-access HOV lanes appeared to offer no safety advantages over continuous-access HOV lanes. Although the overall safety seemed comparable, the observed differences between these types of facilities were attributed to more frequent and concentrated distribution of crashes at limited-access HOV lanes.
- A California study ⁽⁴⁾ of 153 miles of buffer-separated HOV lanes found that wider HOV lanes (up to 12 ft) are associated with fewer crashes and that wider left shoulder widths help reduce crashes in the HOV lanes. No conclusions could be drawn regarding buffer width from that study.
- A Texas study ⁽⁶⁾ that used crash narratives concluded that the reduced HOV cross section, location of general-purpose lane ramps, and speed differential between the HOV and adjacent general-purpose lane all contribute to crashes.

• Several studies have identified AADT and congestion as contributors to more crashes on freeways and HOV lanes.

To better focus this research so to improve the likelihood of identifying usable sites that fit the objective of this project, data collection focused on sites with one (rather than two) managed lane(s) per direction that were operational 24 hours a day, seven days a week. Sites that represented a range of buffer widths with and without pylons were also sought. For this study only those segments that were non-weaving segments were included in the analysis.

The datasets used in this evaluation included 128.0 miles in California (all 128.0 miles were sections with flush buffers) and 60.4 miles in Texas (40.7 miles with pylon buffers and 18.7 miles with flush buffers). The California crash data included the years 2007 through 2011 while the years 2009 to 2014 were used for Texas crash data. The analysis was conducted on non-weaving managed lane segments that included a single managed lane separated from the general purpose lanes with a flush buffer area. The dataset included crashes on 128.0 miles in California (all 128.0 miles with flush buffers) and 60.4 miles in Texas (41.7 miles with pylon buffers and 18.7 miles with flush buffers). The California sites included freeways with three or four general-purpose lanes while the Texas freeways had three to five general-purpose lanes.

All of the buffers for the California segments were flush (i.e., no pylons) with widths that varied between 1 ft and 12 ft. The buffers generally consisted of white and yellow lane line markings. The larger buffer widths (9 or 12 ft) were associated with preserving space for a downstream managed lane ramp. The buffers in Texas include flush buffers and flush buffers with pylons. The Texas sites with flush buffers ranged between 1.5 and 5.0 ft, while the buffers with pylons were between 4.0 and 6.0 ft.

CONCLUSIONS

The analysis of the Texas and California data showed the following:

- Wider managed lane envelope (i.e., left shoulder, managed lane, and buffer) widths are associated with fewer freeway crashes when considering all severity levels as well as when considering only fatal and injury severity levels.
 - In Texas, wider envelopes are associated a reduction of 2.8 percent in total freeway crashes (all severities) for each additional foot of envelope width.
 - In California, wider envelopes are associated a reduction of 2.0 percent in total freeway crashes (all severities) for each additional foot of envelope width.
 - In California, wider envelopes are associated a reduction of 4.4 percent in managed lane-related crashes (fatal and injury severity levels) for each additional foot of envelope width.

Trends in the data clearly suggest that fewer crashes are associated with wider buffer widths. However, an attempt to quantify this trend resulted in strongly correlated estimates. When exploring whether a particular component of the managed lane envelope is more influential than another, the simultaneous evaluation on the three envelope components using California freeway crashes (all severity levels) identified the left shoulder width as statistically significant. Another modeling technique of using the proportion of California managed-lane related crashes to general-purpose crashes revealed that given a crash occurred, the odds of a crash being a managed-lane related crash:

- Decrease with increasing volume in the general-purpose lanes.
- Increase with increasing volume in the managed lane.
- Decrease with increasing managed lane width.
- Decrease with increasing buffer width.
- Increase with increasing number of entrance ramps.

An evaluation was also performed on the crashes that were coded as being on the managed lane or on the buffer. The refined model on managed lane and buffer-related crashes in California that only includes the significant variables found that all three components of the managed lane envelope – left shoulder width, lane width, and buffer width – are significant along with the volume in the managed lane. The results indicate that the lane width is the most influential followed by the buffer width. Changes in left shoulder width are not as influential in the number of managed-lane or buffer related crashes as the buffer or lane width changes.

In summary, the key findings from this study include the following:

- Results from several previous research studies have demonstrated that reductions in freeway lane width or shoulder width are associated with more crashes. Safety prediction equations are available to evaluate the tradeoffs.
- Results from this study, along with other studies, also found that reductions in managed lane envelope widths (shoulder, lane, and buffer width) are associated with more crashes.
- This study also found that narrow buffer widths (defined as being equal to and less than 3 ft) appear to be associated with more crashes as compared to 4-ft to 6-ft buffers.

RECOMMENDATIONS FOR FUTURE RESEARCH

Benefits of Pylons

Freeway cross sections used to accommodate managed lanes vary. At some locations, managed lanes are separated from general-purpose freeway lanes using an exclusive alignment or using barriers. Other locations use a buffer where the buffer consists of a flush area marked with pavement markings and in some cases with supplemental pylons. The findings from this research are that wider managed lane envelopes are associated with fewer crashes and pylons appear to be associated with more crashes. The dataset used to identify the pylon crash relationship presented two important challenges: dataset size and use of freeway (rather than managed lane) crashes. If only those crashes near the pylons are considered (say for the lanes on either side of the pylons) different results may be present. The available data for this study were limited in total number of miles and only one state had data with pylons. The benefits (or disadvantages) of using pylons (and the available buffer width present between the travel lane and the pylon) need additional investigations.

Safety Tradeoffs when Adding a Managed Lane to an Existing Freeway

More crashes are associated with freeway lane and shoulder widths reductions. The increase in crashes may be offset if the reductions are done to increase the number of freeway lanes. A Texas study ⁽¹⁸⁾ developed a methodology and spreadsheet that can be used to evaluate the

tradeoffs; however, the presence of managed lanes was not included in that research. Research is needed to determine the tradeoffs when the added lane is a managed lane.

Safety Differences between Managed Lanes with One Lane and with More than One Lane

This study focused on sites where only one managed lane was present per direction of travel. It is unclear how safety of these sites would compare to sites where additional managed lanes per direction are present. Because of the limited space in urban environments, the decision of adding managed lanes per direction may come at the cost of eliminating general-purpose lanes. The tradeoffs of potential cross-section changes would benefit from research.

Safety / Operations Differences Considering Congestion Levels

Improved level of service and reliability are two important attractors for potential users of managed lanes. Freeway operations and safety are expected to change as more users begin to utilize managed lanes, as this pattern is probably coupled with a decrease of traffic and congestion in the general-purpose lanes. It is unknown if such re-balance of the traffic demand and congestion translates into a measurable safety shift.

CHAPTER 7: REFERENCES

- Jang, K., K. Chung, D.R. Ragland, and C. Chan (2008) Comparison of collisions on HOV facilities with limited and continuous access. Safe Transportation Research & Education Center, Institute of Transportation Studies (UCB), UC Berkeley. Accessed from: <u>http://escholarship.org/uc/item/7qf6g5fx</u>. Accessed on November 5, 2013.
- Jang, K., K. Chung, D. R. Ragland, and C. Y. Chan (2009) "Safety Performance of High-Occupancy-Vehicle Facilities: Evaluation of HOV Lane Configurations in California" In Transportation Research Record: Journal of the Transportation Research Board, No. 2099, Transportation Research Board of the National Academies, Washington, D.C. pp. 132–140.
- Stanitsas, P. J. Hourdos, and S. Zitzow (2014) Evaluation of the Effect of MnPASS Lane Design on Mobility and Safety. Minnesota Department of Transportation. Final Report MN/RC 2014-23.
- 4. Jang, K., S. Kang, J. Seo, C.Y. Chan (2013) "Cross-Section Designs for the Safety Performance of Buffer-Separated High-Occupancy Vehicle Lanes" ASCE Journal of Transportation Engineering, Vol. 139, pp. 247-254.
- Cothron, A. S., S. E. Ranft, C. H. Walters, D. W. Fenno, and D. Lord (2005) Crash Analysis of Selected High-Occupancy Vehicle Facilities in Texas: Methodology, Findings, and Recommendations. Research Report 0-4434-1. Texas Transportation Institute, Texas A&M University System, College Station.
- Cooner, S. A., S. E. Ranft (2006) "Safety Evaluation of Buffer-Separated High-Occupancy Vehicle Lanes in Texas." In Transportation Research Record: Journal of the Transportation Research Board, No. 1959, Transportation Research Board of the National Academies, Washington, D.C. pp. 168–177.
- 7. American Association State and Highway Transportation Officials. *A Policy on Geometric Design of Highways and Streets* (2001) AASHTO, Washington, D.C., 2001.
- 8. Golob, T. F., W. W. Recker, and D. W. Levine (1989) Safety of High-Occupancy Vehicle Lanes without Physical Separation. ASCE Journal of Transportation Engineering, Vol. 115, pp. 591–607.
- Sullivan, E. C., and N. Devadoss (1993) High-Occupancy Vehicle Facility Safety in California. In Transportation Research Record 1394, TRB, National Research Council, Washington, D.C. pp. 49–58.
- Beiswenger, Hock and Associates, and University of Florida Transportation Research Center (1979) Safety Evaluation of Priority Techniques for High-Occupancy Vehicles. FHWA-RD-79-59. FHWA, U.S. Department of Transportation.
- 11. Case, R. B. (1995) The Safety of Concurrent-Lane HOV Projects. Hampton Roads Planning District Commission, Chesapeake, Va.

- Skowronek, D. A., S. E. Ranft, and A. S. Cothron (2002) An Evaluation of Dallas Area HOV Lanes, Year 2002. Research Report 4961-6. Texas Transportation Institute, Texas A&M University System, College Station.
- Bauer, K. M., D. W. Harwood, W. E. Hughes, and K. R. Richard (2004) Safety Effects of Narrow Lanes and Shoulder-Use Lanes to Increase Capacity of Urban Freeways. In Transportation Research Record: Journal of the Transportation Research Board, No. 1897, Transportation Research Board of the National Academies, Washington, D.C. pp. 71–80.
- 14. Cao, X., Z. Xu, and A.Y. Huang. (2012) "Safety Benefits of Converting HOV Lanes to HOT Lanes: Case Study of the I-394 HOT Lanes." ITE Journal.
- 15. Lee, J., R. Dittberner, and H. Sripathi. (2008) "Safety Impacts of Freeway Managed-Lane Strategy: Inside Lane for High-Occupancy Vehicle Use and Right Shoulder Lane as Travel Lane during Peak Periods." Transportation Research Record 2012. Transportation Research Board.
- 16. American Association of State Highway and Transportation Officials (2014) *Highway Safety Manual Supplement*. AASHTO, Washington, D.C.
- Bonneson, J. A., S. Geedipally, M. P. Pratt, and D. Lord (2012) Safety Prediction Methodology and Analysis Tool for Freeways and Interchanges. NCHRP Project 17-45 web-only final report.
- Dixon, K., K. Fitzpatrick, R. Avelar, M. Perez, S. Ranft, R. Stevens, S. Venglar, and T. Voigt (2015) *Reducing Lane and Shoulder Width to Permit an Additional Lane on a Freeway: Technical Report.* FHWA/TX-15/0-6811-1.
- 19. Srinivasan, S., P. Haas, P. Alluri, A. Gan, and J. Bonneson (2015) *Crash Prediction Method* for Freeway Facilities with High Occupancy Vehicle (HOV) and High Occupancy Toll (HOT) Lanes. FDOT Contract BDV32-977-04.

U.S. Department of Transportation

Federal Highway Administration

U.S. Department of Transportation Federal Highway Administration Office of Operations (HOP) 1200 New Jersey Avenue, SE Washington, DC 20590

FHWA-HOP-16-076 December 2016