V. SAFETY, ENERGY, AND ENVIRONMENTAL CONSEQUENCES OF FREIGHT TRANSPORTATION

Growing demand for freight transportation heightens concerns about its safety, energy, and environmental consequences. Most of our current knowledge is in safety, with some in energy consumption. More information is needed to understand and fix freight-related environmental issues.

	1980	1990	2000	2003	20045
Total transportation fatalities (passenger and freight)	NA	47,347	(R) 44,384	45,132	NA
Highway (passenger and freight)	51,091	44,599	41,945	(R) 42,884	42,636
Large truck occupants ¹	1,262	705	754	(R) 726	761
Others killed in crashes involving large trucks	4,709	4,567	4,528	(R) 4,310	4,429
Large truck occupants 1 (percent)	2.5	1.6	1.8	(R) 1.7	1.8
Others killed in crashes involving large trucks (percent)	9.2	10.2	10.8	(R) 10.1	10.4
Railroad (passenger and freight)	1,417	1,297	937	(R) 865	899
Highway-rail crossing ²	833	698	425	(R) 332	368
R ailroad ^{2,3}	584	599	512	(R) 533	531
Waterborne (passenger and freight)	487	186	(R) 187	(R) 127	93
Vessel-related ⁴	206	85	(R) 53	(R) 53	36
Freight ship	8	0	0	3	2
Tank ship	4	5	0	0	3
Tug / towboat	14	13	(R) 2	(R) 0	1
Offshore supply	NA	2	(R) 3	0	0
Fishing vessel	60	47	(R) 30	(R) 18	14
Mobile offshore drilling units	NA	0	0	(R) 2	0
Platform	NA	1	0	0	0
Freight barge	NA	0	0	0	1
Tank barge	NA	0	0	(R) 2	0
Miscellaneous	56	11	(R) 6	(R) 5	6
Not vessel-related ⁴	281	101	(R) 134	(R) 74	57
Pipeline	19	9	38	12	24
Hazardous liquid pipeline	4	3	1	0	5
Gas pipeline	15	6	37	12	19

Key: NA = not available; R = revised.

Note: Caution must be exercised in comparing fatalities across modes because significantly different definitions are used.

Nearly 5,200 people died in crashes involving large trucks in 2004, although only 761 of those were large-truck occupants. Fatalities involving large trucks are about 12 percent of all highway fatalities, while trucks account for about 7 percent of highway vehicle miles traveled (vmt). Despite a doubling of large truck travel between 1980 and 2004, the number of fatalities involving large trucks declined 13 percent over this period.

Large trucks are defined as trucks over 10,000 pounds gross vehicle weight rating, including single-unit trucks and truck tractors. Includes Amtrak.

³Includes train accidents and other incidents. Most fatalities involve trespassers who are included under other incidents (482 in 2004).
⁴Vessel-related casualties include those involving damage to vessels such as collisions or groundings. Fatalities not related to vessel casualties include deaths from falling overboard or from accidents involving onboard equipment.
⁵Railroad fatalities are preliminary.

	•	•			
	1980	1990	2000	2003	20045
TOTAL injured persons (passenger and freight)	NA		(R) 3,259,673	2,918,405	NA
Highway (passenger and freight)	NA	3,231,000	3,189,000	2,889,000	2,788,000
Large truck occupants ¹	NA	42,000	31,000	27,000	27,000
Others injured in crashes involving large trucks	NA	108,000	109,000	95,000	89,000
Large truck occupants ¹ (percent)	NA	1.3	1.0	0.9	1.0
Others injured in crashes involving large trucks (percent)	NA	3.3	3.4	3.3	3.2
Railroad (passenger and freight)	62,246	25,143	11,643	(R) 9,157	8,751
Highway-rail grade crossing ²	3,890	2,407	1,219	(R) 1,028	1,071
R ailroa d ^{2,3}	58,356	22,736	10,424	(R) 8,129	7,680
Waterborne (passenger and freight)	NA	NA	(R) 757	(R) 778	703
Vessel-related ⁴	180	175	(R) 150	(R) 227	198
Freight ship	8	10	(R) 5	(R) 8	4
Tank ship	9	13	3	(R) 1	7
Tug / towboat	27	19	10	(R) 9	22
Offshore supply	NA	9	5	(R) 5	5
Fishing vessel	28	31	(R) 23	(R) 22	36
Mobile offshore drilling units	NA	13	0	(R) 15	0
Platform	NA	9	(R) 0	0	0
Freight barge	NA	3	2	0	5
Tank barge	NA	3	0	(R) 1	1
Miscellaneous	98	12	(R) 8	(R) 29	25
Not related to vessel casualties ⁴	NA	NA	(R) 607	(R) 551	505
Pipeline	192	76	81	71	55
Hazardous liquid pipeline	15	7	4	5	13
Gas pipeline	177	69	77	66	42

Key: NA = not available; R = revised.

Note: Numbers may not add to totals due to some injuries being counted in more than one mode.

About 125,000 people are injured each year in freight transportation. Like fatalities, most injuries involve trucks. Yet, these injuries account for less than 5 percent of the total number of people injured on the highway each year. Approximately, 10 percent of injures are the result of non-highway related incidents, mostly railroading. Since 1980, railroading has become much safer with a drop in injuries of more than 80 percent.

Large trucks are defined as trucks over 10,000 pounds gross vehicle weight rating, including single-unit trucks and truck tractors.

³Includes train accidents and other incidents. Most injuries (5,975 in 2004) involve workers on duty.

^{*}Vessel-related injuries include those involving damage to vessels, such as collisions or groundings. Injuries not related to vessel casualties include those from falls overboard or from accidents involving onboard equipment.

⁵Railroad injuries are preliminary.

Large trucks were involved in about 7 percent of all highway crashes in 2004. The estimated number of crashes in 2004 is up by about 12 percent since 1990, a good deal less than the roughly 50 percent increase in truck miles driven over the same period.

Table 5-3. Transportation Ac	cidents b	y Freight Tr	ansportatio	on Mode	
	1980	1990	2000	2003	2004 ⁵
Highway (passenger and freight)	NA	6,471,000	6,394,000	6,328,000	6,181,000
Large truck ¹	NA	372,000	438,000	(R) 436,000	416,000
Large truck1 (percent of total)	NA	5.7	6.9	(R) 6.9	6.7
Rail (passenger and freight)					
Highway-rail grade crossing ^{2,3}	10,796	5,715	3,502	(R) 2,966	3,050
Railroad ^{2,4}	8,205	2,879	2,983	(R) 2,991	3,179
Waterborne (passenger and freight)					
Vessel-related	4,624	3,613	(R) 5,403	(R) 5,163	4,962
Pipeline					
Hazardous liquid pipeline	246	180	(R) 146	(R) 129	140
Gas pipeline	1,524	198	234	(R) 244	292

Key: NA = not available; R = revised.

^{&#}x27;Large trucks are defined as trucks over 10,000 pounds gross vehicle weight rating, including single-unit trucks and truck tractors.

²Includes Amtrak.

³Includes both accidents and incidents. Most highway-rail grade crossing accidents are also counted under highway.

⁴Train accidents only.

⁵Railroad data are preliminary.

	1980	1990	2000	2003	2004
Total	15,719	8,879	(R) 17,557	(R) 15,162	14,740
Accident-related	486	297	390	(R) 341	281
Air	223	297	1,419	(R) 751	995
Accident-related	0	0	1	0	0
Highway	14,161	7,296	(R) 15,063	(R) 13,599	12,977
Accident-related	347	249	327	299	233
Rail	1,271	1,279	1,058	(R) 802	753
Accident-related	134	48	62	42	48
Water ¹	34	7	17	10	15
Accident-related	2	0	0	0	0
Other ²	30	0	0	0	0
Accident-related	3	0	0	0	0

Key: R = revised.

Water category only includes packaged (nonbulk) marine. Non-packaged (bulk) marine hazardous materials incidents are reported to the U.S. Coast Guard and are not included.

²Other category includes freight forwarders and modes not otherwise specified. **Notes:** Hazardous materials transportation incidents required to be reported are defined in the Code of Federal Regulations (CFR), 49 CFR 171.15, 171.16 (Form F 5800.1). Hazardous materials deaths and injuries are caused by the hazardous are related means vehicular accident or derailment. Each modal total also includes fatalities caused by human error, package failure, and causes not elsewhere classified.

Because most hazardous materials are transported by truck, most incidents related to hazardous materials transportation are on the highways. In 2003, 88 percent of all incidents were highway-related. Moreover, 54 percent of injuries and 77 percent of fatalities in hazardous materials transportation occurred in highway transportation during 2004.

A very small share of hazardous material transportation incidents are the result of a vehicular crash or

derailment (referred to as "accident-related"). In 2004, only 2 percent of incidents were accident-related. Most incidents occur because of human error or package failure, particularly during loading and unloading. While only 2 percent of incidents were accident-related in 2004, they accounted for 70 percent of all property damage.

Table 5-5. Commercial Motor Carrier Compliance Review Activity by Safety Rating

	199	99	200	03	2004		
Safety rating	Number	Percent	Number	Percent	Number	Percent	
Satisfactory	3,485	47.9	(R) 5,002	59.9	4,396	57.7	
Conditional	2,543	34.9	(R) 2,345	28.1	2,308	30.3	
Unsatisfactory	1,122	15.4	(R) 754	9.0	698	9.2	
Not rated	128	1.8	(R) 243	2.9	221	2.9	
Total	7,278	100.0	(R) 8,344	100.0	7,623	100.0	

Key: R = revised.

Note: A compliance review is an on-site examination of a motor carrier's records and operations to determine whether the carrier meets the Federal Motor Carrier Safety Administration's safety fitness standard. This entails having adequate safety management controls in place to ensure acceptable compliance with applicable safety requirements to reduce the risk associated with: alcohol and controlled substance testing violations; commercial driver's license standard violations; inadequate levels of financial responsibility; the use of unqualified drivers; improper use and driving of motor vehicles; unsafe vehicles operating on the highways; failure to maintain crash registers and copies of crash reports; the use of fatigued drivers; inadequate inspection, repair, and maintenance of vehicles; transportation of hazardous materials; driving and parking rule violations; violation of hazardous materials regulations; motor vehicle crashes and hazardous materials incidents.

TABLE 5-4. HAZARDOUS MATERIALS TRANSPORTATION INCIDENTS

Source: U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration, Office of Hazardous Materials Safety, Hazardous Materials Information System Database, available at http://hazmat.dot.gov as of July 19, 2005.

TABLE 5-5. COMMERCIAL MOTOR CARRIER COMPLIANCE REVIEW ACTIVITY BY SAFETY RATING

Source: U.S. Department of Transportation, Federal Motor Carrier Administration, Motor Carrier Management Information System (MCMIS), March 25, 2005 data snapshot, available at http://www.fmcsa.dot.gov/ as of July 22, 2005.

The safety fitness of motor carriers has improved markedly over the past few years. In 2004, the share of motor carriers rated satisfactory was 58 percent, up from 48 percent in 1999.

Almost a quarter of roadside inspections of commercial vehicles result in the vehicle being taken out-of-service (OOS) for a serious violation. A much lower percentage of driver and hazardous materials inspections result in OOS orders. In 2004, only 7 percent of driver inspections and 6 percent of hazardous materials inspections resulted in an OOS order.

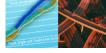
Table 5-6. R	oadside Safety Ins	spection A	ctivity Summa	ry By Inspe	ection Type		
	200	2	200	3	2004		
	Number	Percent	Number	Percent	Number	Percent	
All inspections							
Number of inspections	(R) 3,013,652	100.0	(R) 3,012,402	100.0	3,014,907	100.0	
With no violations	(R) 830,762	27.6	(R) 812,516	27.0	810,406	26.9	
With violations	(R) 2,182,890	72.4	(R) 2,199,886	73.0	2,204,501	73.	
Driver inspections							
Number of inspections	(R) 2,956,676	100.0	(R) 2,956,214	100.0	2,957,827	100.0	
With no violations	(R) 1,869,030	63.2	(R) 1,881,894	63.7	1,891,067	63.	
With violations	(R) 1,087,646	36.8	(R) 1,074,320	36.3	1,066,760	36.	
With OOS violations	(R) 212,633	7.2	(R) 199,837	6.8	194,276	6.	
Vehicle inspections							
Number of inspections	(R) 2,172,904	100.0	(R) 2,163,025	100.0	2,249,338	100.	
With no violations	(R) 663,956	30.6	(R) 674,793	31.2	697,558	31.	
With violations	(R) 1,508,948	69.4	(R) 1,488,232	68.8	1,551,780	69.	
With OOS violations	(R) 497,613	22.9	(R) 493,937	(R) 22.8	524,464	23.	
Hazardous materials inspec	ctions						
Number of inspections	(R) 173,090	100.0	(R) 181,691	100.0	178,951	100.	
With no violations	(R) 138,939	80.3	(R) 148,486	81.7	145,527	81.	
With violations	(R) 34,151	19.7	(R) 33,205	18.3	33,424	18.	

Key: OOS = out of service; R = revised.

With OOS violations

Notes: A roadside inspection is an examination of individual commercial motor vehicles and drivers to determine if they are in compliance with the Federal Motor Carrier Safety Regulations and/or Hazardous Materials Regulations. Serious violations result in the issuance of driver or vehicle out of service (OOS) orders. These violations must be corrected before the driver or vehicle can return to service. Moving violations also may be recorded in conjunction with a roadside inspection.

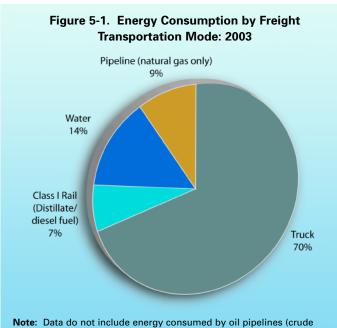
5.7


(R) 9,571

5.3

9,957

5.6


(R) 9,938

	1980	1990	2000	2003
Highway				
Gasoline, diesel and other fuels (million gallons)	114,960	130,755	162,555	169,624
Truck, total	19,960	24,490	35,229	37,585
Single-unit 2-axle 6-tire or more truck	6,923	8,357	9,563	10,690
Combination truck	13,037	16,133	25,666	26,895
Truck (percent of total)	17.4	18.7	21.7	22.2
Rail, Class I (in freight service)				
Distillate / diesel fuel (million gallons)	3,904	3,115	3,700	3,826
Water				
Residual fuel oil (million gallons)	8,952	6,326	6,410	3,874
Distillate / diesel fuel oil (million gallons)	1,478	2,065	2,261	2,217
Gasoline (million gallons)	1,052	1,300	1,124	1,107
Pipeline				
Natural gas (million cubic feet)	634,622	659,816	642,210	664,973

The number of gallons of fuel burned by commercial trucks nearly doubled over the past twenty years, while fuel use in several other modes declined. Between 1980 and 2003, the fuel consumed in highway freight transportation increased from 20 billion to 38 billion gallons annually. This is due to a substantial increase in the number of trucks on the road, an increase in the average number of miles traveled per truck, and a doubling of truck vmt. Over the same period, fuel use in Class I freight rail declined from 3.9 to 3.8 billion gallons.

In 2003, trucking accounted for 70 percent of freight transportation energy consumption. Water transportation accounted for 14 percent, natural gas pipelines 9 percent,

petroleum and petroleum products) nor coal slurry/water slurry pipelines.

Mode: 2003 Sources: Truck: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics, (Washington, DC:

FIGURE 5-1. ENERGY CONSUMPTION BY FREIGHT TRANSPORTATION

Annual issues), table VM-1. Rail: Association of American Railroads, Railroad Facts (Washington, DC: 2004), p. 40. Water: U.S. Department of Energy, Energy Information Administration, Fuel Oil and Kerosene Sales (Washington, DC: Annual issues), tables 2 and 4; U.S. Department of Transportation, Federal Highway Administration, Highway Statistics (Washington, DC: Annual issues), table MF-24. Pipeline: U.S. Department of Energy, Natural Gas Annual 2003, DOE/EIA-0131(03) (Washington, DC: November 2004), table 15.

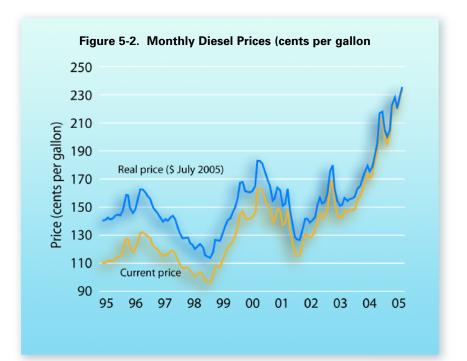
and Class I rail only 7 percent.

TABLE 5-7. FUEL CONSUMPTION BY TRANSPORTATION MODE Sources: Highway: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics (Washington, DC: Annual issues), table VM-1 and similar tables in earlier editions. Rail: Association of American Railroads, Railroad Facts (Washington, DC: October 2004), p. 40. Water: U.S. Department of Energy, Energy Information Administration, Fuel Oil and Kerosene Sales (Washington, DC: Annual issues), tables 2, 4, and similar tables in earlier editions. Pipeline: U.S. Department of Energy, Natural Gas Annual 2003, DOE/EIA-0131(02) (Washington, DC: January 2005), table 15 and similar tables in earlier editions.

Over the past two decades, miles traveled per gallon by single-unit trucks increased by nearly 30 percent. Between 1980 and 2003, the fuel consumed increased 54 percent whereas miles traveled increased by 95 percent. As a result, over these years, miles per gallon increased from 5.8 to 7.3.

	1980	1990	2000	2003
Number registered (thousands)	4,374	4,487	5,926	5,667
Vehicle-miles (millions)	39,813	51,901	70,500	77,562
Fuel consumed (million gallons)	6,923	8,357	9,563	10,690
Average miles traveled per vehicle	9,103	11,567	11,897	13,687
Average miles traveled per gallon	5.8	6.2	7.4	7.3
Average fuel consumed per vehicle (gallons)	1,583	1,862	1,614	1,886

In contrast to single-unit trucks, miles traveled per gallon by combination trucks changed very little over the past twenty years. Consequently, the gallons of fuel consumed doubled between 1980 and 2003 along with the number of miles traveled.


	1980	1990	2000	2003
Number registered (thousands)	1,417	1,709	2,097	2,245
Vehicle-miles traveled (millions)	68,678	94,341	135,020	138,322
Fuel consumed (million gallons)	13,037	16,133	25,666	26,895
Average miles traveled per vehicle	48,472	55,206	64,399	61,611
Average miles traveled per gallon	5.3	5.8	5.3	5.1
Average fuel consumed per vehicle (gallons)	9,201	9,441	12,241	11,980

Diesel prices were about 62 percent higher in July 2005 than 10 years earlier (in inflation-adjusted terms). Over that period prices bottomed out in February 1999 at just under \$1.14 a gallon (in \$ July 2005).

Table 5-8. Single-Unit 2-Axie 6-Tire on More Truck Fuel Consumption and Travel.

Source: U.S. Department of Transportation, Federal Highway Administration, Highway Statistics (Washington, DC: Annual issues).

Energy intensity is the amount of energy used in producing a given level of output or activity, in this case transportation.

Since 1980 the energy intensity of both trucking and freight rail have improved. However, over the same period, domestic freight water transportation, measured by Btu per ton-mile, has become more energy intense.

Air quality is affected by emissions from freight vehicles. Compared with gasoline fueled cars and trucks, diesel fueled heavy trucks emit small amounts of carbon monoxide (CO) but large amounts of nitrogen oxides (NO_x) .

	1980	1990	2000	2001	2002		
Highway (Btu per vehicle-mile)	24,757	22,795	23,443	23,016	23,432		
Railroad (Class I) (Btu per freight car-mile)	18,742	16,619	14,917	15,108	15,003		
Railroad (Class I) (Btu per ton-mile)	597	420	352	346	345		
Water (Btu per ton-mile)	358	387	473	460	471		

Freight transportation is a major source of NO_x emissions accounting for 27 percent of all U.S. NO_x emissions and half of emissions from mobile sources. Freight transportation also accounts for about one-third of emissions of particulate matter 10 microns in diameter (PM-10) from mobile sources. Most PM-10, however, comes from agricultural fields, wildfires, and fugitive dust. Consequently, freight transportation is a minor factor when considering total PM-10 emissions.

FIGURE 5-2. MONTHLY DIESEL PRICES

Source: Diesel price: U.S. Department of Energy, Energy Information Agency, U.S. Petroleum Prices, available at www.eia.doe.gov as of September 12, 2005. Consumer price index: U.S. Department of Labor, Bureau of Labor Statistics, Consumer Price Index – All Urban Consumers, Monthly, available at www.bls.gov as of September 12, 2005.

Table 5-10: Energy Intensities of Domestic Freight Modes
Source: Oak Ridge National Laboratory, Transportation Energy Data Book: Edition 24 (Oak Ridge,TN: 2004).

Table 5-11: Estimated National Average Vehicle Emissions Rates of Heavy-duty and Light-duty Vehicles (grams per mile)

	1990	2000	2001	2002	2003	2004				
	Gasoline (assuming zero RFG)									
Cars										
Exhaust HC	2.79	0.97	0.89	0.81	0.74	0.61				
Nonexhaust HC	1.21	0.92	0.88	0.84	0.81	0.7				
Total HC	3.99	1.89	1.77	1.65	1.54	1.37				
Exhaust CO	42.89	18.53	18.03	17.58	17.13	13.79				
Exhaust NO _x	2.70	1.29	1.25	1.20	1.14	1.00				
Light trucks										
Exhaust HC	3.68	1.45	1.35	1.24	1.13	0.96				
Nonexhaust HC	1.36	0.97	0.94	0.89	0.84	0.8				
Total HC	5.04	2.42	2.29	2.13	1.98	1.70				
Exhaust CO	56.23	26.81	25.61	24.32	22.30	18.7				
Exhaust NO.	2.62	1.54	1.53	1,50	1.45	1.3				
Heavy trucks										
Exhaust HC	3.66	1.22	1.09	0.98	0.82	0.7				
Nonexhaust HC	2.74	1.62	1.54	1.48	1.41	1.3				
Total HC	6.40	2.84	2.63	2.46	2.24	2.0				
Exhaust CO	85.61	31.08	27.59	24.73	20.60	18.4				
Exhaust NO _x	7.19	5.26	5.13	5.01	4.91	4.6				
	Diesel									
Cars										
Ednaust HC	0.68	0.80	0.76	0.73	0.73	0.6				
Edhaust CO	1.49	1.78	1.75	1.73	1.74	1.5				
Exhaust NO _x	1.83	1.81	1.72	1,62	1.54	1.4				
Light trucks										
Exhaust HC	1.59	1.02	0.88	0.96	0.97	0.98				
Exhaust CO	2.67	1.77	1.54	1.66	1.68	1.6				
Exhaust NO.	2.71	1.76	1.64	1,67	1.66	1.5				
Heavy trucks										
Exhaust HC	2.21	0.79	0.74	0,69	0.61	0.5				
Exhaust CO	10.06	4.10	3.82	3.58	3.37	3.19				
Exhaust NO.	23.34	18.05	16,68	15.52	13.92	12.5				

Key: $CO = carbon monoxide; HC = hydrocarbon; NO_q = nitrogen oxidea; RFG = reformulated gasoline.$

Trucks are by far the largest contributor to freight emissions nationally, producing twothirds of NO_{x} and PM-10 from the freight sector. New U.S. Environmental Protection Agency emissions standards for trucks are expected to significantly reduce emissions, however, even with large increases in truck traffic.

Table 5-12: Nitrogen Oxides (NO_x) and Particulate Matter (PM-10) Emissions by Freight Transportation Mode: 2002

		NO _X Emissions As percent of:			PM-10 Emissions As percent of:			ent of:
			All mobile				All mobile	
Mode	Tons	Percent	sources	All sources	Tons	Percent	sources	All sources
Heavy-duty vehicles	3,782,000	66.8	33.0	17.9	120,000	64.7	23.3	0.5
Freight railroads	857,200	15.1	7.5	4.1	21,300	11.5	4.1	0.1
Marine vessels	1,011,000	17.9	8.8	4.8	44,000	23.7	8.5	0.2
Air freight	8,200	0.1	0.1	0.0	300	0.2	0.1	0.0
Total	5,658,400	100.0	49.4	26.8	185,600	100.0	36.0	0.8

	Tons	Daveant	Percent	
2002	2010	2020	change, 2002-2010	change, 2002-2020
3,782,000	2,186,900	662,600	-42	-82
857,200	563,200	486,400	-34	-43
1,011,000	987,200	938,600	-2	-7
8,200	10,000	12,400	22	51
5,658,400	3,747,299	2,099,999	-34	-63
	3,782,000 857,200 1,011,000 8,200	2002 2010 3,782,000 2,186,900 857,200 563,200 1,011,000 987,200 8,200 10,000	2002 2010 2020 3,782,000 2,186,900 662,600 857,200 563,200 486,400 1,011,000 987,200 938,600 8,200 10,000 12,400	2002201020202002-20103,782,0002,186,900662,600-42857,200563,200486,400-341,011,000987,200938,600-28,20010,00012,40022

Table 5-14: Current and Future Particulate Matter (PM-10) Emissions by Freight Transportation Mode

		Tons	_			
	2002	2010	2020	Percent change, 2002-2010	Percent change, 2002-2020	
Heavy-duty trucks	120,000	65,380	34,760	-46	-71	
Freight rail	21,300	17,890	15,360	-16	-28	
Commercial marine	44,000	45,330	46,960	3	7	
Air freight	300	290	270	-3	-10	
Freight total	185,600	128,889	97,349	-31	-48	

Table 5-12: Nitrogen Oxides (NO_x) and Particulate Matter (PM-10) Emissions by Freight Transportation Mode: 2002

Source: U.S. Department of Transportation, Federal Highway Administration, *Impacts of Freight Movement on Air Quality*, prepared by ICF Consulting, January 26, 2005, based on U.S. Environmental Protection Agency, National Emissions Inventory.

TABLE 5-13: CURRENT AND FUTURE NITROGEN OXIDES (NO_x) EMISSIONS BY FREIGHT TRANSPORTATION MODE

Source: U.S. Department of Transportation, Federal Highway Administration, *Impacts of Freight Movement on Air Quality*, prepared by ICF Consulting, January 26, 2005, based on U.S. Environmental Protection Agency, National Emissions Inventory.

Table 5-14: Current and Future Particulate Matter (PM-10) Emissions by Freight Transportation Mode Source: U.S. Department of Transportation, Federal Highway Administration, *Impacts of Freight Movement on Air Quality*, prepared by ICF Consulting, January 26, 2005, based on U.S. Environmental Protection Agency, National Emissions Inventory.