Work Zone Applications of Bluetooth Traffic Detection

John W. Shaw, PE

Traffic Data & Microsimulation Manager, Wisconsin Traffic Operatiosn and Safety Laboratory

FHWA Work Zone Peer Exchange

Atlanta, GA 08-May-2013

Wisconsin Traffic Operations and Safety Laboratory

Would You Like To...

- Know when traffic in your work zone is starting to slow down?
- Provide travel times for alternate routes?

DOWNTOWN VIA		
WORK ZONE	30	MIN
ALTERNATE ROUTE	25	MIN

Would You Like To...

- Compare actual work zone delay with what was predicted in the TMP/MOT?
- Evaluate locational differences in work zone throughput?
- See how much traffic diverted to the alternate route?
- See whether people who diverted actually saved time?

What is Bluetooth?

- 2.4 GHz wireless system for connecting electronic devices
- Low power, low cost.
- Range ~100 meters.
- High level of data/content security.
- Every device has unique MAC address.
- No master database of MAC addresses.
- Used for traffic detection since 2008.

Image source: bluetooth.com

Bluetooth Data Collection

Bluetooth Data Collection

Detector B at 45.002, -90.0044 MAC ID 1234456890ABCDEF 07:03:35 Central Server MAC ID 1234456890ABCDEF Elapsed Time 00:02:30 Distance 2 Miles = 48 mph

Detector A at 45.002, -89.9638 MAC ID 1234456890ABCDEF 07:01:05

Vehicle Re-Identification Process

- 1. "Listen" for Bluetooth MAC addresses at two or more locations.
- 2. Record observation time and location.
- 3. Transmit observations to central server.
- 4. Match MAC addresses spatially.
- 5. Compute travel time.
- 6. Filter out unreasonable travel times.
- 7. Evaluate and Report Speed, OD and Route.
- 8. Combine with volume data if appropriate.

What Can Bluetooth Do?

А

One Detector:

Not Much

Two Detectors:

• Trip Time (Speed)

Three Detectors:

• Origin and Destination

Four or More Detectors:

Route Choice

By Itself, Bluetooth Provides...

 Discrete, timestamped observations of people/vehicles moving around.

But NOT traffic volume.

Field Equipment

Wisconsin Traffic Operations and Safety Laboratory

Installation

Equipment Set-up

Cabinet-Mount Examples

DeepBlue (TrafficNow)

BlueFAX (Traffax)

BlueTOAD (Trafficcast)

BlueCompass (Acyclica)

Post Oak Traffic Systems

Other Configurations

Side-Fire (TrafficNow)

MiniTOAD (Trafficcast)

Portable (Acyclica)

DIN Rail (TrafficNow)

Portable (Traffax)

Travel Time Western Milwaukee Suburbs

- 5.5 mile segment carrying 130,000 AADT
- WisDOT concerned about accuracy of DMS travel times
- Current system using data from 41 loop detectors
- Some loops reporting zero speeds
- Speeds sensitive to ongoing calibration

Findings

- Loop speeds low in free-flow conditions
- Loop speeds too high in congestion
- BT pairing sampling rate
 <3% (2010)

Recent Work Zone Field Studies

- Milwaukee
- Portage
- Grafton
- Endeavor

Work Zone Traffic Performance

Freeway Work Zone Capacity

Why do some work zones operate better than others?

Rural Freeway WZ Capacity, Delay & Route Choice (Portage, WI)

- Weekend recreational route
- 30+ miles
- 13 BT units
- Mainline + Alternates
- Volume counts

Results: Rural Freeway Capacity

Results: Rural Route Choice

- Drivers can respond to WZ congestion in a variety of ways.
- Modest increases in traffic on alternate routes
- Relatively few exited and then returned to freeway.
- More commonly, local traffic stayed on local routes until past the work zone.

Urban Freeway WZ Capacity, Delay & Route Choice (Milwaukee Suburbs)

Freeway Mainline + Two Alternate Routes
Bluetooth Detectors + Volume Counts

Results: Urban Freeway Capacity

🔶 Volume (PCE) 🛛 🚽 📥 Avg. Speed

Stable Flow AM: 1825-2200 PCE/hr/lane PM: 1825-1950 PCE/hr/lane

Queue Discharge AM: 1600-1825 PCE/hr/lane PM: 1725-1825 PCE/hr/lane

Results: Urban Route Choice

 Commuters very willing to use alt routes.
 Increased traffic on alt routes even when mainline was *not* congested.

Lessons Learned

Lessons Learned

Lessons Learned

- Detection rates vary by route type and time of day
- Since Jan 2012, USDOT requires truck drivers to use hands-free devices.

Data Processing Matters

Figure 3-13: Raw Observations, US-50, South Lake Tahoe, CA to Placerville, CA

The Secret is in the Software

Options

- Proprietary vendor-supplied filtering and matching services
- Free software from sensor vendors (basic)
- Third-party software (advanced)

Bluetooth vs Side-Fire Radar

Bluetooth

- Speed (lagging)
- Travel time for a route segment
- Accurate at all speeds
- Many mounting options
- Observes all traffic
- Low power consumption
- Requires at least 2 detectors
- \$2500-5000 per detector
- Some vendors offer rental

Radar

- Speed + Volume
- Point speed at a specific location
- Not accurate at low speed
- Pole-mount at roadside
- Observes specific lanes
- 8 to 11 watts continuous
- Can get data from a single detector
- About \$5000 per detector

Bluetooth Pro & Con

Strengths

- Inexpensive
- Low power consumption
- Highly accurate speed data
- Easy to extend study duration
- Efficient method for collecting OD info
- Only practical way to collect route choice data

Limitations

- Low sampling rates
- Capture rates can vary by time of day (prob. trucks)
- Sometimes sensitive to:
 - Site Characteristics
 - Antenna Placement
 - Loss of Power/Comm
 - Data processing assumptions

Questions?

Wisconsin Traffic Operations and Safety Laboratory

John W. Shaw jwshaw@wisc.edu 414-227-2150

Wisconsin Traffic Operations and Safety Laboratory

