# III. THE FREIGHT TRANSPORTATION SYSTEM

Freight travels over an extensive network of highways, railroads, waterways, pipelines, and airways. Existing and anticipated increases in the number of freight vehicles, vessels, and other conveyances on both public and private infrastructure are stressing system capacity, increasing maintenance requirements, and threatening system performance.

|                                                  | 1990      | 2000      | 2007      | 2008      | 2009      |
|--------------------------------------------------|-----------|-----------|-----------|-----------|-----------|
| Public roads, route miles                        | 3,866,926 | 3,951,101 | 4,048,523 | 4,059,343 | NA        |
| National Highway System (NHS)                    | N         | 161,189   | 163,746   | 164,096   | NA        |
| Interstates                                      | 45,074    | 46,673    | 46,934    | 47,013    | NA        |
| Other NHS                                        | N         | 114,516   | 116,812   | 117,083   | NA        |
| Other                                            | N         | 3,789,912 | 3,884,775 | 3,895,246 | NA        |
| Strategic Highway Corridor Network<br>(STRAHNET) | Ν         | 62,066    | 62,698    | 62,253    | NA        |
| Interstate                                       | N         | 46,675    | 46,937    | 47,013    | NA        |
| Non-Interstate                                   | N         | 15,389    | 16,031    | 15,240    | NA        |
| Railroad                                         | 175,909   | 170,512   | 140,134   | 139,326   | 139,118   |
| Class I                                          | 133,189   | 120,597   | 94,313    | 94,082    | 93,921    |
| Regional                                         | 18,375    | 20,978    | 16,930    | 16,690    | 12,804    |
| Local                                            | 24,337    | 28,937    | 28,891    | 28,554    | 32,393    |
| Inland waterways                                 |           |           |           |           |           |
| Navigable channels                               | 11,000    | 11,000    | 11,000    | 11,000    | 11,000    |
| Great Lakes-St. Lawrence Seaway                  | 2,342     | 2,342     | 2,342     | 2,342     | 2,342     |
| Pipelines                                        |           |           |           |           |           |
| Oil                                              | 208,752   | 176,996   | 166,133   | 173,000   | 171,328   |
| Gas                                              | 1,189,200 | 1,369,300 | 1,520,200 | 1,525,000 | 1,526,400 |

**Key:** Key: N = not applicable; NA = not available.

Trade with both Canada and Mexico has grown rapidly over the past decade. Trucks carried about 59 percent of the value of goods traded with these two countries.

Since 1990, road infrastructure increased slowly despite a large increase in the volume of traffic. Over the same period, rail miles declined by 21 percent while gas pipeline mileage increased by 28 percent.

TABLE 3-1. MILES OF INFRASTRUCTURE BY TRANSPORTATION MODE: 1990, 2000, AND 2007-2009

www.corpsreform.org/sitepages/downloads/CitzGuideChptr1.pdf as of August 30, 2012. Great Lakes-St. Lawrence Seaway: The St. Lawrence Seaway Development Corporation, "The Seaway," available at www.greatlakes-seaway.com/en/seaway/facts/index.html as of August 30, 2012. Oil pipelines: 1980-2000: Eno Transportation Foundation, *Transportation in America*, 2002 (Washington, DC: 2002). 2001-2009: U.S. Department of Transportation, Pipeline and Hazardous Materials Safety Administration, Office of Pipeline Safety, *Pipeline Statistics*, available at www.phmsa.dot.gov/pipeline/library/data-stats as of August 30, 2012. Gas pipelines: American Gas Association, *Gas Facts* (Arlington, VA: annual issues).

Sources: Public Roads: U.S. Department of Transportation, Federal Highway Administration, *Highway Statistics* (Washington, DC: annual issues), tables HM-16 and HM-49, available at www.fhwa.dot.gov/policyinformation/statistics/2009/ as of August 30, 2012. Rail: Association of American Railroads, *Railroad Facts* (Washington, DC: annual issues). Navigable channels: U.S. Army Corps of Engineers, *A Citizen's Guide to the USACE*, available at

## Table 3-2. Number of U.S. Vehicles, Vessels, and Other Conveyances: 1990, 2000, and 2007-2009

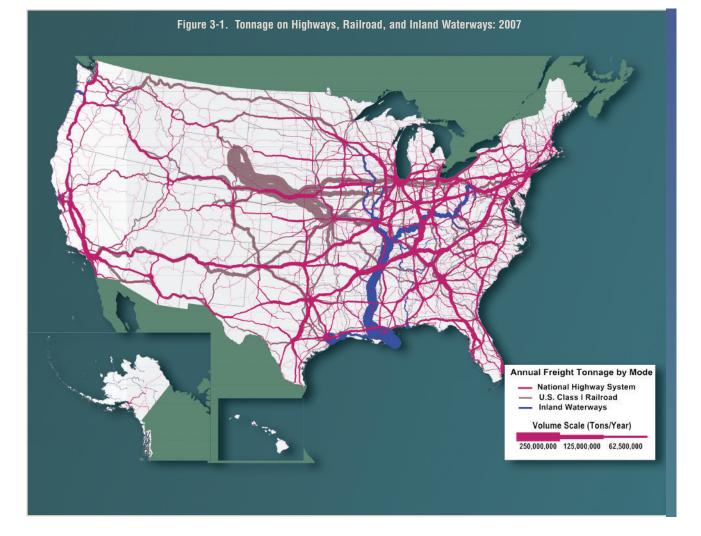
|                                                      | 1990    | 2000    | 2007        | 2008        | 2009        |
|------------------------------------------------------|---------|---------|-------------|-------------|-------------|
| Highway <sup>1</sup>                                 | -       | -       | 254,403,081 | 255,917,664 | 254,212,610 |
| Truck, single-unit 2-axle 6-tire or more             | -       | -       | 8,116,672   | 8,288,046   | 8,356,097   |
| Truck, combination                                   | -       | -       | 2,635,347   | 2,585,229   | 2,617,118   |
| Truck, total                                         | -       | -       | 10,752,019  | 10,873,275  | 10,973,215  |
| Trucks as percent of all highway vehicles            | -       | -       | 4.2         | 4.2         | 4.3         |
| Rail                                                 |         |         |             |             |             |
| Class I, locomotive                                  | 18,835  | 20,028  | 24,143      | 24,003      | 24,045      |
| Class I, freight cars <sup>2</sup>                   | 658,902 | 560,154 | 460,172     | 450,297     | 416,180     |
| Nonclass I, freight cars <sup>2</sup>                | 103,527 | 132,448 | 120,463     | 109,487     | 108,233     |
| Car companies and shippers freight cars <sup>2</sup> | 449,832 | 688,194 | 805,074     | 833,188     | 839,020     |
| Water                                                | 39,445  | 41,354  | 40,695      | 40,301      | 40,109      |
| Nonself-propelled vessels <sup>3</sup>               | 31,209  | 33,152  | 31,654      | 31,238      | 31,008      |
| Self-propelled vessels <sup>4</sup>                  | 8,236   | 8,202   | 9,041       | 9,063       | 9,101       |

<sup>1</sup>Based on a new methodology, FHWA revised its annual vehicle miles travelled, number of vehicles, and fuel economy data beginning with 2007. Information on the new methodology is available at

www.fhwa.dot.gov/policyinformation/statistics.cfm. Data in this table should not be compared to those in pre-2011 editions of *Freight Facts and Figures*.

<sup>2</sup>Beginning with 2001 data, Canadian-owned U.S. railroads are excluded. Canadian-owned U.S. railroads accounted for over 46,000 freight cars in 2000.

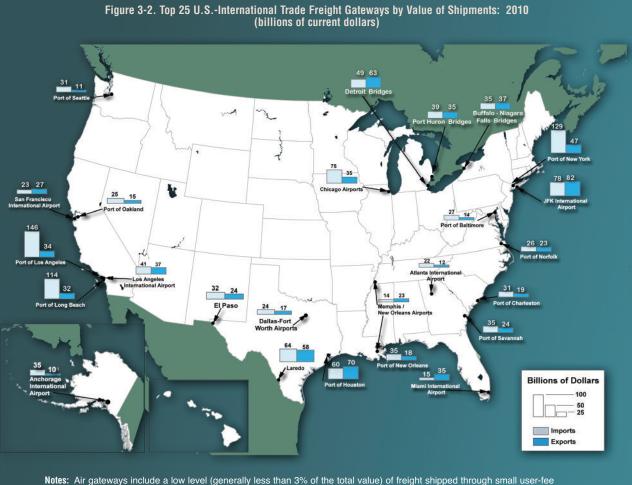
<sup>3</sup>Nonself-propelled vessels include dry-cargo barges, tank barges, and railroad-car floats.


<sup>4</sup>Self-propelled vessels include dry cargo, passenger, off-shore support, tankers, and towboats.

A vast number of vehicles and vessels move goods over the transportation network. The number of commercial trucks has been relatively stable in recent years, while the number of rail freight cars declined with improved utilization and the deployment of larger cars.

 
 TABLE 3-2. NUMBER OF U.S. VEHICLES, VESSELS, AND OTHER CONVEYANCES: 1990, 2000, AND 2007-2009

 Sources:
 Highway:
 U.S. Department of Transportation, Federal Highway Administration, Highway Statistics (Washington, DC: annual issues), table VM-1, available at www.fhwa.dot.gov/policyinformation/statistics/2009/ as of August 30, 2012. Rail: Locomotive: Association of American Railroads, Railroad Facts (Washington, DC: annual issues). Freight cars: Association of American Railroads, Railroad Facts (Washington, DC: annual issues). Water: Nonself-propelled vessels and self-propelled vessels:
 U.S. Army, Corps of Engineers, Waterborne Transportation Lines of the United States, Volume 1, National Summaries (New Orleans, LA: annual issues).






Trucks carry most of the tonnage and value of freight in the United States, but railroads and waterways carry significant volumes over long distances. Rail moves a large volume of coal between the Powder River Basin in Wyoming and the Midwest, while the principal inland waterways movement by volume occurs along the Lower Mississippi River.

#### FIGURE 3-1. TONNAGE ON HIGHWAYS, RAILROAD, AND INLAND WATERWAYS: 2007

Sources: Highways: U.S. Department of Transportation, Federal Highway Administration, Freight Analysis Framework, Version 3.4, 2012. Rail: Based on Surface Transportation Board, Annual Carload Waybill Sample and rail freight flow assignments done by Oak Ridge National Laboratory. Inland Waterways: U.S. Army Corps of Engineers (USACE), Annual Vessel Operating Activity and Lock Performance Monitoring System data, as processed for USACE by the Tennessee Valley Authority; and USACE, Institute for Water Resources, Waterborne Foreign Trade Data. Water flow assignments done by Oak Ridge National Laboratory.



**Notes:** Air gateways include a low level (generally less than 3% of the total value) of freight shipped through small user-fee airports located in the same area as the gateways listed. Air gateways not identified by airport name (e.g., Chicago, IL) include major airport(s) in that area and small regional airports. Due to Census Bureau confidentiality regulations, courier operations are included in airport totals for only New York (JFK), Los Angeles, Chicago, and Anchorage.

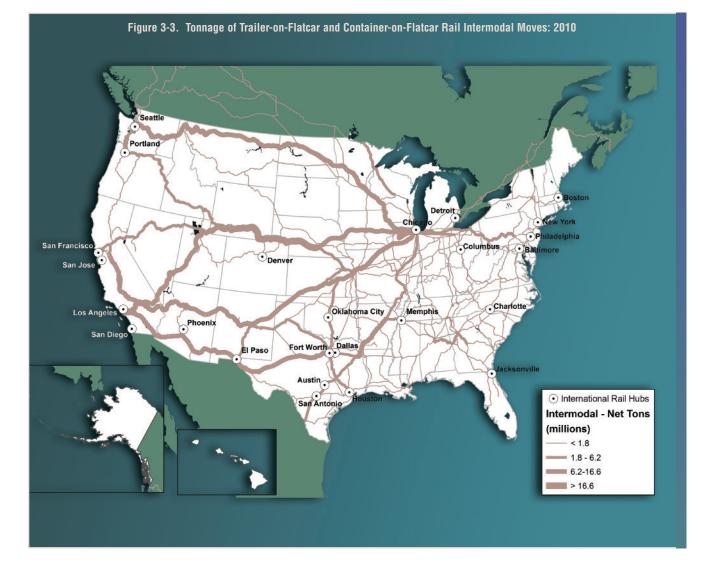

Transportation facilities that move international trade into and out of the United States demonstrate the importance of all modes and intermodal combinations to global connectivity. The top 25 foreign-trade gateways measured by value of shipments are comprised of 11 water ports, 5 land-border crossings, and 9 air gateways.



FIGURE 3-2. TOP 25 U.S.-INTERNATIONAL TRADE FREIGHT GATEWAYS BY VALUE OF SHIPMENTS: 2010 Sources: Air: U.S. Department of Commerce, U.S. Census Bureau, Foreign Trade Division

Sources: Air: U.S. Department of Commerce, U.S. Census Bureau, Foreign Trade Division, USA Trade Online; Land: U.S. Department of Transportation, Research and Innovative Technology Administration, Bureau of Transportation Statistics, TransBorder Freight Data; Water: U.S. Army Corps of Engineers, Navigation Data Center, personal communication, as cited in U.S. Department of Transportation, Research and Innovative Technology Administration, Bureau of Transportation Statistics, National Transportation Statistics, table 1-51, available at www.bts.gov/publications/national\_transportation\_statistics/ as of October 2012.





Modes of transportation frequently work together to move high-value, time-sensitive cargo. The classic forms of rail intermodal transportation are trailer-on-flatcar and container-on-flatcar, and these are spread throughout the United States. The largest concentrations are on routes between Pacific Coast ports and Chicago, southern California and Texas, and Chicago and New York.

FIGURE 3-3. TONNAGE OF TRAILER-ON-FLATCAR AND CONTAINER-ON-FLATCAR RAIL INTERMODAL MOVES: 2010 Source: U.S. Department of Transportation, Federal Railroad Administration, special tabulation, August 2012.



Containerized cargo has grown rapidly over the past decade and is concentrated at a few large water ports. The Ports of Los Angeles and Long Beach together handle about 38 percent of all container traffic at water ports in the United States. While container trade at these two ports increased by 54 percent between 2000 and 2010, this growth rate was slightly lower than that reported for container cargo overall.



Note: The data include both government and non-government shipments by vessel into and out of U.S. foreign trade zones, the 50 states, District of Columbia, and Puerto Rico.



FIGURE 3-4. TOP 25 WATER PORTS BY CONTAINERIZED CARGO: 2010 Source: U.S. Department of Transportation, Maritime Administration, U.S. Waterborne Container Trade by U.S. Custom Ports, based on data provided by Port Import/Export Reporting Service, available at www.marad.dot.gov/library\_landing\_page/data\_and\_statistics/Data\_and\_Statistics.htm as of August 29, 2011.

| Vessel Size   | 1      |        |        |        |        |        |
|---------------|--------|--------|--------|--------|--------|--------|
| (TEUs)        | 2005   | 2006   | 2007   | 2008   | 2009   | 2010   |
| Calls         |        |        |        |        |        |        |
| < 2,000       | 3,994  | 4,146  | 3,904  | 3,493  | 3,290  | 3,709  |
| 2,000-2,999   | 4,410  | 3,986  | 4,099  | 3,347  | 2,677  | 2,761  |
| 3,000-3,999   | 3,624  | 3,333  | 2,866  | 2,460  | 2,500  | 2,053  |
| 4,000-4,999   | 4,226  | 4,782  | 5,033  | 5,121  | 5,305  | 5,881  |
| > 4,999       | 2,288  | 3,344  | 3,961  | 4,314  | 4,434  | 5,126  |
| Total Calls   | 18,542 | 19,591 | 19,863 | 18,735 | 18,206 | 19,530 |
| Vessels       |        |        |        |        |        |        |
| < 2,000       | 207    | 212    | 196    | 196    | 179    | 178    |
| 2,000-2,999   | 259    | 257    | 230    | 219    | 220    | 206    |
| 3,000-3,999   | 189    | 177    | 166    | 141    | 147    | 130    |
| 4,000-4,999   | 234    | 258    | 271    | 284    | 306    | 315    |
| > 4,999       | 193    | 260    | 277    | 326    | 366    | 396    |
| Total Vessels | 1,082  | 1,164  | 1,140  | 1,166  | 1,218  | 1,225  |

From 2005 to 2010, the number of calls by containership with capacities of 5,000 TEUs or greater has more than doubled. These large containerships accounted for 26 percent of containership calls at U.S. ports in 2010, up from 12 percent in 2005.

In 2010, 7,579 oceangoing vessels made 62,747 calls at U.S. ports, a 13 percent increase from the previous year. Tankers accounted for 35 percent of total calls, followed by containerships (31 percent) and dry bulk vessels (17 percent). Approximately 97 percent of all tankers calling at U.S. ports are double-hull vessels, a 19 percent increase from five years earlier.

| Туре                  | 2005   | 2006   | 2007   | 2008   | 2009   | 2010   | Percent<br>Change,<br>2005-2010 |
|-----------------------|--------|--------|--------|--------|--------|--------|---------------------------------|
| Tanker                | 20,118 | 21,231 | 21,724 | 20,907 | 19,641 | 21,944 | 9.1                             |
| Double hull           | 15,869 | 17,747 | 19,026 | 19,036 | 18,631 | 21,265 | 34.0                            |
| Product               | 12,217 | 13,282 | 13,277 | 12,662 | 11,815 | 13,257 | 8.5                             |
| Double hull           | 8,799  | 10,252 | 10,811 | 10,952 | 10,887 | 12,622 | 43.4                            |
| Crude                 | 7,901  | 7,949  | 8,447  | 8,245  | 7,826  | 8,687  | 9.9                             |
| Double hull           | 7,070  | 7,495  | 8,215  | 8,084  | 7,744  | 8,644  | 22.3                            |
| Container             | 18,542 | 19,591 | 19,863 | 18,735 | 18,206 | 19,530 | 5.3                             |
| Dry Bulk              | 11,406 | 12,508 | 11,040 | 10,363 | 8,587  | 10,716 | -6.0                            |
| Roll on/Roll off      | 5,663  | 6,318  | 6,077  | 5,964  | 4,951  | 5,849  | 3.3                             |
| Vehicle               | 3,652  | 4,182  | 4,084  | 4,102  | 3,336  | 4,100  | 12.3                            |
| Gas                   | 969    | 961    | 917    | 769    | 704    | 813    | -16.1                           |
| Liquefied Natural Gas | 203    | 213    | 202    | 171    | 201    | 202    | -0.5                            |
| Combo                 | 414    | 334    | 235    | 180    | 135    | 168    | -59.4                           |
| General               | 3,935  | 4,054  | 3,948  | 3,660  | 3,336  | 3,727  | -5.3                            |
| All Types             | 61,047 | 64,997 | 63,804 | 60,578 | 55,560 | 62,747 | 2.8                             |

Key: TEU = twenty-foot equivalent unit.

#### TABLE 3-3. CONTAINERSHIP CALLS AT U.S. PORTS BY VESSEL SIZE AND NUMBER OF VESSELS: 2005-2010

Sources: Lloyd's Marine Intelligence Unit, Vessel Movements Data Files, 2005-2010 (London: Lloyd's Marine

Intelligence Unit, 2005-2010); Lloyd's Marine Intelligence Unit, Seasearcher (London: Lloyd's Marine Intelligence Unit, 2011); and Clarkson Research Studies, Clarkson's Vessel Registers (London: Clarkson Research Studies, January 2011).

#### TABLE 3-4. NUMBER OF VESSEL CALLS AT U.S. PORTS: 2005-2010

Sources: Lloyd's Marine Intelligence Unit, Vessel Movements Data Files, 2005-2010 (London: Lloyd's Marine Intelligence Unit, 2005-2010); Lloyd's Marine Intelligence Unit, Seasearcher (London: Lloyd's Marine Intelligence Unit, 2011); and Clarkson Research Studies, Clarkson's Vessel Registers (London: Clarkson Research Studies, January 2011).



# Figure 3-5. Top 25 Water Ports by Tonnage: 2010



Although the top ports for containerized cargo are primarily on the Pacific and Atlantic Coasts, bulk cargo, such as coal, crude petroleum, and grain move through ports on the Gulf Coast and inland waterway system. The top 25 water ports by tonnage handle about two-thirds of the weight of all foreign and domestic goods moved by water.

FIGURE 3-5. TOP 25 WATER PORTS BY TONNAGE: 2010 Source: U.S. Army Corps of Engineers, *2010 Waterborne Commerce of the United States, Part 5, National Summaries* (New Orleans, LA: 2011), table 5-2, available at www.ndc.iwr.usace.army.mil//wcsc/wcsc.htm as of June 30, 2012. The average vessel size per call at U.S. ports increased from 50,083 deadweight tons (DWT) in 2005 to 53,592 DWT in 2010, an increase of 7 percent. The average size of containerships increased by 19 percent in terms of TEU capacity (15 percent in terms of DWT) as carriers expanded the deployment of post-panamax containerships in U.S. trades. Post-panamax refers to vessels that are larger than the width and length of the lock chambers in the Panama Canal.

| Туре                  | 2005    | 2006    | 2007    | 2008    | 2009    | 2010    | Percent<br>Change,<br>2005-2010 |
|-----------------------|---------|---------|---------|---------|---------|---------|---------------------------------|
| Tanker                | 72,056  | 71,831  | 72,222  | 72,281  | 72,066  | 71,131  | -1.3                            |
| Double hull           | 76,240  | 75,891  | 76,408  | 75,034  | 73,623  | 72,081  | -5.5                            |
| Product               | 37,956  | 37,669  | 36,699  | 36,661  | 37,345  | 37,275  | -1.8                            |
| Double hull           | 37,799  | 37,934  | 36,994  | 36,936  | 37,303  | 37,195  | -1.6                            |
| Crude                 | 124,784 | 128,913 | 128,058 | 126,984 | 124,486 | 122,798 | -1.6                            |
| Double hull           | 124,083 | 127,811 | 128,278 | 126,648 | 124,685 | 123,018 | -0.9                            |
| Container             | 44,593  | 46,598  | 47,720  | 49,213  | 50,202  | 51,263  | 15                              |
| TEU                   | 3,314   | 3,502   | 3,597   | 3,744   | 3,848   | 3,932   | 18.6                            |
| Dry Bulk              | 43,276  | 44,746  | 45,270  | 47,306  | 48,081  | 50,298  | 16.2                            |
| Roll on/Roll off      | 19,838  | 19,751  | 19,635  | 20,153  | 20,628  | 20,577  | 3.7                             |
| Vehicle               | 18,506  | 18,801  | 18,585  | 18,896  | 19,203  | 19,261  | 4.1                             |
| Gas                   | 41,411  | 40,738  | 40,462  | 40,755  | 44,487  | 43,092  | 4.1                             |
| Cubic meters          | 61,410  | 60,037  | 59,369  | 60,159  | 66,986  | 64,433  | 4.9                             |
| Liquefied Natural Gas | 70,374  | 70,962  | 73,703  | 70,097  | 74,465  | 74,445  | 5.8                             |
| Cubic meters          | 128,504 | 130,006 | 134,832 | 128,834 | 135,895 | 137,028 | 6.6                             |
| Combo                 | 87,151  | 86,344  | 93,617  | 97,607  | 102,154 | 109,238 | 25.3                            |
| General               | 25,101  | 25,446  | 25,572  | 24,585  | 23,689  | 23,598  | -6                              |
| All Types             | 50,083  | 50,672  | 51,658  | 52,535  | 53,430  | 53,592  | 7.0                             |

Key: TEU = twenty-foot equivalent unit.

TABLE 3-5. AVERAGE VESSEL SIZE PER CALL AT U.S. PORTS: 2005-2010

Sources: Lloyd's Marine Intelligence Unit, Vessel Movements Data Files, 2005-2010 (London: Lloyd's Marine Intelligence Unit, 2005-2010); Lloyd's Marine Intelligence Unit, Seasearcher (London: Lloyd's Marine Intelligence Unit, 2011); and Clarkson Research Studies, Clarkson's Vessel Registers (London: Clarkson Research Studies, January 2011).



## Table 3-6. Top 25 Airports by Landed Weight of All-Cargo Operations: 2000 and 2007-2010<sup>1</sup>

|                                                                          | 2010 |        |        | ded weigł<br>ds of shor |        |        |
|--------------------------------------------------------------------------|------|--------|--------|-------------------------|--------|--------|
| Airport                                                                  | Rank | 2000   | 2007   | 2008                    | 2009   | 2010   |
| Memphis, TN (Memphis International)                                      | 1    | 6,318  | 9,772  | 9,750                   | 9,464  | 9,772  |
| Anchorage, AK (Ted Stevens Anchorage International) <sup>2</sup>         | 2    | 8,084  | 10,562 | 8,976                   | 7,762  | 9,732  |
| Louisville, KY (Louisville International-Standiford Field)               | 3    | 3,987  | 5,216  | 5,223                   | 5,139  | 5,319  |
| Miami, FL (Miami International)                                          | 4    | 2,929  | 3,715  | 3,494                   | 3,176  | 3,453  |
| Chicago, IL (O'Hare International)                                       | 5    | 2,062  | 2,201  | 2,103                   | 1,750  | 2,448  |
| Indianapolis, IN (Indianapolis International)                            | 6    | 2,884  | 2,652  | 2,564                   | 2,288  | 2,359  |
| Los Angeles, CA (Los Angeles International)                              | 7    | 2,892  | 3,431  | 2,876                   | 1,884  | 1,977  |
| New York, NY (John F. Kennedy International)                             | 8    | 2,793  | 2,557  | 2,222                   | 1,591  | 1,962  |
| Fort Worth, TX (Dallas/Fort Worth International)                         | 9    | 1,691  | 1,753  | 1,614                   | 1,436  | 1,516  |
| Newark, NJ (Newark Liberty International)                                | 10   | 1,961  | 1,873  | 1,727                   | 1,464  | 1,489  |
| Oakland, CA (Metropolitan Oakland International)                         | 11   | 1,811  | 1,811  | 1,742                   | 1,341  | 1,324  |
| Atlanta, GA (William B. Hartsfield International)                        | 12   | 1,090  | 1,261  | 1,167                   | 1,278  | 1,314  |
| Cincinatti, OH (Cincinatti/Northern Kentucky International) <sup>3</sup> | 13   | 912    | 97     | 104                     | 564    | 1,216  |
| Ontario, CA (Ontario International)                                      | 14   | 1,220  | 1,394  | 1,350                   | 1,168  | 1,121  |
| Honolulu, HI (Honolulu International)                                    | 15   | 692    | 1,134  | 1,032                   | 1,021  | 1,062  |
| Philadelphia, PA (Philadelphia International)                            | 16   | 1,454  | 1,375  | 1,264                   | 1,132  | 994    |
| Houston, TX (George Bush Intercontinental)                               | 17   | 480    | 769    | 754                     | 784    | 763    |
| Seattle, WA (Seattle-Tacoma International)                               | 18   | 1,060  | 691    | 747                     | 803    | 697    |
| San Francisco, CA (San Francisco International)                          | 19   | 1,267  | 1,039  | 775                     | 747    | 652    |
| Denver, CO (Denver International)                                        | 20   | 900    | 642    | 625                     | 624    | 619    |
| Phoenix, AZ (Sky Harbor International)                                   | 21   | 920    | 711    | 675                     | 610    | 607    |
| Portland, OR (Portland International)                                    | 22   | 882    | 713    | 656                     | 545    | 531    |
| Minneapolis, MN (Minneapolis-St Paul International/Wold-Chamberlain)     | 23   | 622    | 612    | 562                     | 474    | 512    |
| Chicago/Rockford, IL (Chicago/Rockford International)                    | 24   | 654    | 737    | 710                     | 564    | 459    |
| Seattle, WA (King County International)                                  | 25   | 428    | 403    | 418                     | 447    | 453    |
| Top 25 airports <sup>4</sup>                                             |      | 52,381 | 57,715 | 53,621                  | 48,153 | 52,350 |
| United States, all airports <sup>₅</sup>                                 |      | 74,743 | 76,583 | 71,281                  | 63,191 | 67,530 |
| Top 25 as % of U.S. total                                                |      | 70.1   | 75.4   | 75.2                    | 76.2   | 77.5   |

Dedicated to the exclusive transportation of cargo, all-cargo operations do not include aircraft carrying passengers that also may be carrying cargo. Aircraft landed weight is the certificated maximum gross landed weight of the aircraft as specified by the aircraft manufacturers.

<sup>2</sup>Anchorage includes a large share of all-cargo operations in-transit.

<sup>3</sup>The significant 2007 decrease in landed weight at Cincinnati/Northern Kentucky International Airport was due to a major reduction in DHL Airways' cargo operations, which have since rebounded.

Airport rankings change each year. Totals represent the top 25 airports for each year, not necessarily the top 25 airports listed here for 2010.

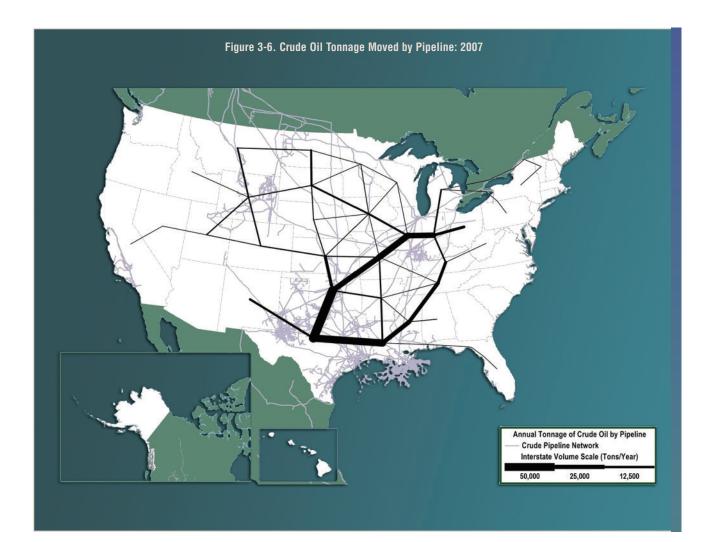
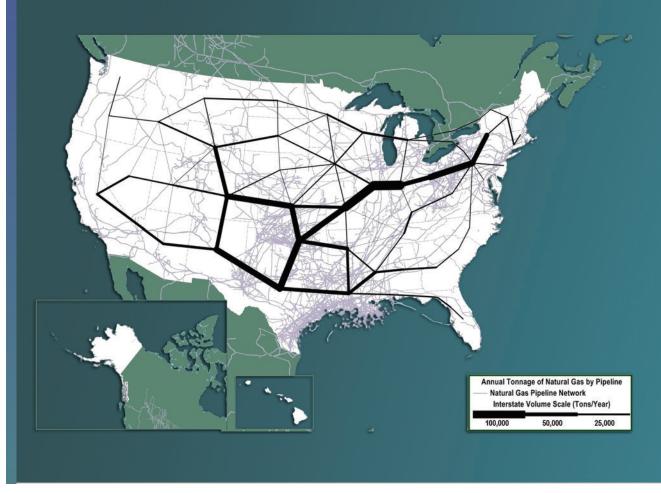
<sup>5</sup>Limited to airports with an aggregate landed weight in excess of 100 million pounds (50,000 short tons) annually. Note: 1 short ton = 2,000 pounds.

The three most important U.S. airports that handle all-cargo aircraft are Memphis, Anchorage, and Louisville. Memphis and Louisville are major hubs for FedEx and the United Parcel Service. Anchorage is a major international gateway for trade with Asia.

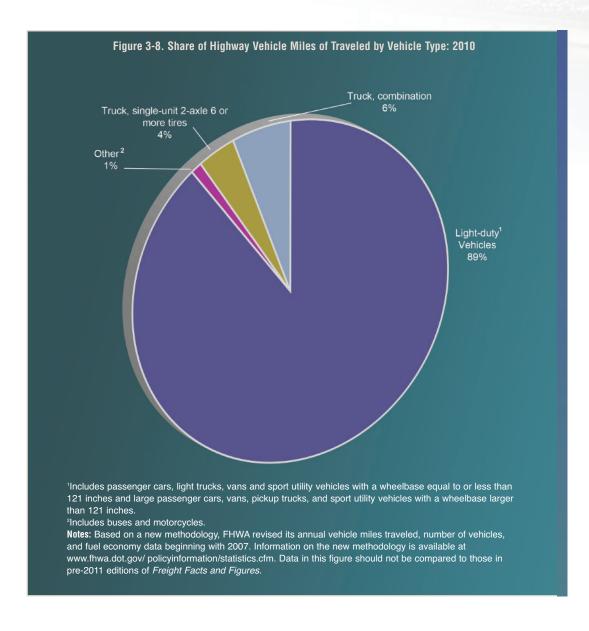


TABLE 3-6. TOP 25 AIRPORTS BY LANDED WEIGHT OF ALL-CARGO OPERATIONS: 2000 AND 2007-2010 Sources: U.S. Department of Transportation, Federal Aviation Administration, Air Carrier Activity Information System (ACAIS) database, All-Cargo Data, available at www.faa.gov/airports/planning\_capacity/passenger\_allcargo\_stats/passenger/ as of June 25, 2012.

Pipelines move large volumes of crude oil and natural gas from producing fields to markets throughout the United States. Based on FAF data, the oil and gas pipeline system moved 1.5 billion tons valued at \$723 billion in 2007. Large volumes of crude oil were moved from producing fields in Texas and Louisiana.





Figure 3-7. Natural Gas Tonnage Moved by Pipeline: 2007



| Long L. |  |
|---------|--|
|         |  |
|         |  |

Natural gas is located in many of the same areas as crude oil. Gathering pipelines (or trunk lines) move the gas to processing plants where impurities are removed. From the processing plants, natural gas is moved to customers via an extensive and complex system of interstate/intrastate pipelines and distribution lines.

Despite doubling over the past two decades, truck traffic remains a relatively small share of highway traffic as a whole. In 2010, commercial trucks accounted for about 10 percent of highway vehicle miles traveled. Truck tractors hauling semitrailers and other truck combinations accounted for approximately 59 percent of commercial truck travel, while single-unit trucks with six or more tires accounted for the remainder.



## Table 3-7. Trucks and Truck Miles by Average Weight: 1987, 1992, 1997, and 20021

|                            | 198                   | 7                 | 199                   | 2                 | 199                   | 7                 | 200                   | 2                 | Percent C<br>1987 to |       |
|----------------------------|-----------------------|-------------------|-----------------------|-------------------|-----------------------|-------------------|-----------------------|-------------------|----------------------|-------|
| Average weight<br>(pounds) | Number<br>(thousands) | VMT<br>(millions) | Number<br>(thousands) | VMT<br>(millions) | Number<br>(thousands) | VMT<br>(millions) | Number<br>(thousands) | VMT<br>(millions) | Number               | VMT   |
| Total                      | 3,624                 | 89,972            | 4,008                 | 104,987           | 4,701                 | 147,876           | 5,415                 | 145,624           | 49.4                 | 61.9  |
| Light-heavy                | 1,030                 | 10,768            | 1,259                 | 14,012            | 1,436                 | 19,815            | 1,914                 | 26,256            | 85.9                 | 143.8 |
| 10,001 to 14,000           | 525                   | 5,440             | 694                   | 8,000             | 819                   | 11,502            | 1,142                 | 15,186            | 117.6                | 179.2 |
| 14,001 to 16,000           | 242                   | 2,738             | 282                   | 2,977             | 316                   | 3,951             | 396                   | 5,908             | 63.6                 | 115.8 |
| 16,001 to 19,500           | 263                   | 2,590             | 282                   | 3,035             | 301                   | 4,362             | 376                   | 5,161             | 43.2                 | 99.3  |
| Medium-heavy               | 766                   | 7,581             | 732                   | 8,143             | 729                   | 10,129            | 910                   | 11,766            | 18.8                 | 55.2  |
| 19,501 to 26,000           | 766                   | 7,581             | 732                   | 8,143             | 729                   | 10,129            | 910                   | 11,766            | 18.8                 | 55.2  |
| Heavy-heavy                | 1,829                 | 71,623            | 2,017                 | 82,832            | 2,536                 | 117,931           | 2,591                 | 107,602           | 41.7                 | 50.2  |
| 26,001 to 33,000           | 377                   | 5,411             | 387                   | 5,694             | 428                   | 7,093             | 437                   | 5,845             | 15.9                 | 8.0   |
| 33,001 to 40,000           | 209                   | 4,113             | 233                   | 5,285             | 257                   | 6,594             | 229                   | 3,770             | 9.7                  | -8.4  |
| 40,001 to 50,000           | 292                   | 7,625             | 339                   | 9,622             | 400                   | 13,078            | 318                   | 6,698             | 9.0                  | -12.2 |
| 50,001 to 60,000           | 188                   | 7,157             | 227                   | 8,699             | 311                   | 12,653            | 327                   | 8,950             | 73.8                 | 25.1  |
| 60,001 to 80,000           | 723                   | 45,439            | 781                   | 51,044            | 1,070                 | 74,724            | 1,179                 | 77,489            | 63.1                 | 70.5  |
| 80,001 to 100,000          | 28                    | 1,254             | 33                    | 1,529             | 46                    | 2,427             | 69                    | 2,950             | 144.3                | 135.2 |
| 100,001 to 130,000         | ) 8                   | 440               | 12                    | 734               | 18                    | 1,051             | 26                    | 1,571             | 238.5                | 257.2 |
| 130,001 or more            | 4                     | 185               | 5                     | 227               | 6                     | 312               | 6                     | 329               | 43.2                 | 77.9  |

Key: VMT = vehicle miles traveled.

Excludes trucks with an average weight of 10,000 pounds or less.

Notes: Weight includes the empty weight of the vehicle plus the average weight of the load carried. Numbers may not add to totals due to rounding.



The nation's truck fleet has grown significantly in number and distance driven. Of trucks weighing more than 10,000 pounds registered to businesses, individuals, and organizations other than government, most growth has occurred at either end of the weight spectrum. Distance traveled has more than doubled between 1987 and 2002 for trucks weighing between 10,000 pounds and 26,000 pounds and for trucks weighing over 80,000 pounds. Trucks between 60,000 pounds and 80,000 pounds form the largest category in both number of trucks and vehicle miles traveled because in most cases 80,000 pounds is the maximum weight allowed on the highway system without special permits.

Federal and state governments are concerned about truck weight because of the damage that heavy trucks can do to roads and bridges. To monitor truck weight, approximately



TABLE 3-7. TRUCKS AND TRUCK MILES BY AVERAGE WEIGHT: 1987, 1992, 1997, AND 2002 Source: U.S. Department of Commerce, Census Bureau, 2002 Vehicle Inventory and Use Survey: United States, EC02TV-US (Washington, DC: 2004), available at www.census.gov/prod/ec02/ec02tv-us.pdf as of August 5, 2012; U.S. Department of Commerce, Census Bureau, 1992 Truck Inventory and Use Survey: United States, TC92-T-52 (Washington, DC: 1995), available at www.census.gov/prod/ec97/97tv-us.pdf as of August 5, 2012.

185 million weighs were made in 2011, about 65 percent of which were weigh-in-motion,

and 35 percent were static. Considerably less than 1 percent of weighs discover violations.

|                              | 2005        | 2006        | 2007        | 2008        | 2009        | 2010        | <b>201</b> 1        |
|------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|---------------------|
| All Weighs                   | 230,464,926 | 229,450,656 | 217,444,117 | 200,419,382 | 182,256,996 | 198,564,690 | 185,498,220         |
| Weigh-in-Motion              | 136,380,657 | 142,598,736 | 132,257,618 | 119,826,305 | 116,176,399 | 118,025,789 | 119,718,032         |
| Static Weighs <sup>1</sup>   | 94,084,269  | 86,851,920  | 85,186,499  | 80,593,077  | 66,080,597  | 80,538,901  | 65,780,188          |
| Semiportable Scales          | 493,574     | 422,860     | 425,731     | 357,502     | 373,073     | 285,484     | 323,936             |
| Fixed Scales                 | 93,038,479  | 85,900,007  | 84,213,507  | 79,644,702  | 65,182,174  | 79,703,573  | 64,922,32           |
| Portable Scales              | 552,216     | 529,053     | 547,261     | 590,873     | 525,350     | 549,844     | 533,93 <sup>-</sup> |
| Violations <sup>2</sup>      | 567,949     | 621,391     | 530,350     | 555,168     | 489,975     | 478,576     | 415,54              |
| Axle Weight Violations       | 275,442     | 269,758     | 233,563     | 248,813     | 220,631     | 216,735     | 178,209             |
| Gross Weight Violations      | 118,328     | 149,561     | 126,761     | 120,384     | 116,291     | 114,171     | 84,490              |
| Bridge Weight Violations     | 174,179     | 202,072     | 170,026     | 185,971     | 153,053     | 147,670     | 152,846             |
| Permits <sup>3</sup>         | 3,625,898   | 4,598,227   | 4,827,668   | 5,215,724   | 4,528,654   | 4,838,663   | 4,944,334           |
| Non-Divisible Trip Permits   | 2,711,500   | 3,399,435   | 3,743,323   | 3,693,248   | 3,285,801   | 3,510,301   | 3,762,553           |
| Non-Divisible Annual Permits | 233,160     | 250,505     | 332,148     | 322,288     | 298,805     | 303,230     | 320,76              |
| Divisible Trip Permits       | 288,145     | 426,381     | 398,003     | 489,712     | 369,906     | 341,737     | 334,650             |
| Divisible Annual Permits     | 393,093     | 521,906     | 354,194     | 710,476     | 574,142     | 683,395     | 526,364             |

<sup>1</sup>Static weighs include the total number of vehicles weighed from semiportable, portable, and fixed scales. <sup>2</sup>Violations include those from axle, gross, and bridge formula weight limits.

<sup>3</sup>Permits issued are for divisible and non-divisible loads on a trip or on an annual basis, as well as the over-width movement of a divisible load. **Note:** Incomplete data from District of Columbia (2008), Hawaii (2008, 2009, 2010, and 2011), Indiana (2005), Massachusetts (2010), New Hampshire (2011) Pennsylvania (2006), South Dakota (2006 and 2007), and Vermont (2011).

Freight moving in combination trucks depends heavily on the Interstate System. Although only one-fourth of the distance traveled by all traffic is on the Interstate System, nearly onehalf of combination-truck vehicle miles of travel are made on the Interstate highways.

|                                         | Combination<br>Trucks | Single-Unit<br>Trucks <sup>1</sup> | Other <sup>2</sup> | Light-duty<br>Vehicles <sup>3</sup> | Total, All Motor<br>Vehicles |
|-----------------------------------------|-----------------------|------------------------------------|--------------------|-------------------------------------|------------------------------|
| Interstate vehicle miles (millions)     | 85,041                | 25,691                             | 7,312              | 605,295                             | 723,339                      |
| Interstate percent                      | 48.3                  | 23.2                               | 22.7               | 22.9                                | 24.4                         |
| Non-Interstate vehicle miles (millions) | 90,871                | 84,982                             | 24,939             | 2,042,363                           | 2,243,154                    |
| Non-Interstate percent                  | 51.7                  | 76.8                               | 77.3               | 77.1                                | 75.6                         |
| Total vehicle miles, all roadways       | 175,911               | 110,674                            | 32,251             | 2,647,659                           | 2,966,494                    |

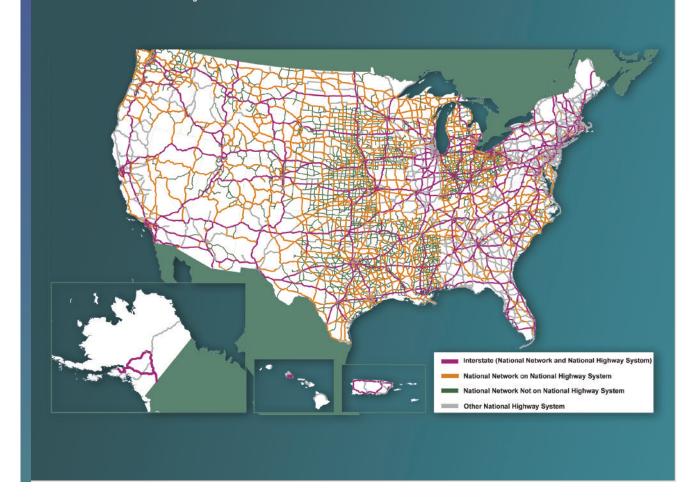
<sup>1</sup>Trucks on a single frame with at least two axles and six tires.

<sup>2</sup>Includes buses and motorcycles.

<sup>3</sup>Includes passenger cars, light trucks, vans and sport utility vehicles with a wheelbase equal to or less than 121 inches and large passenger cars, vans, pickup trucks, and sport utility vehicles with a wheelbase larger than 121 inches.

**Notes:** Based on a new methodology, FHWA revised its annual vehicle miles travelled, number of vehicles, and fuel economy data beginning with 2007. Information on the new methodology is available at www.fhwa.dot.gov/policyinformation/statistics.cfm. Data in this table should not be compared to those in pre-2011 editions of *Freight Facts and Figures*. Numbers may not add to totals due to rounding.

#### TABLE 3-8. COMMERCIAL VEHICLE WEIGHT ENFORCEMENT ACTIVITIES: 2005-2011

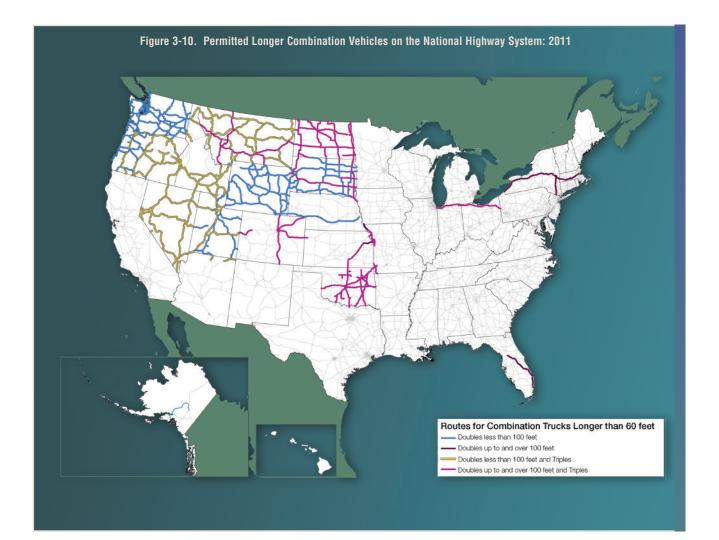

**Source:** U.S. Department of Transportation, Federal Highway Administration, Office of Freight Management and Operations, Annual State Certifications of Size and Weight Enforcement on Federal-aid Highways, as prescribed under 23 CFR Part 657, August 10, 2012.

#### TABLE 3-9. ANNUAL VEHICLE DISTANCE TRAVELED BY HIGHWAY CATEGORY AND VEHICLE TYPE: 2011

Source: U.S. Department of Transportation, Federal Highway Administration, *Highway Statistics*, Table VM-1, available at www.fhwa.dot.gov/policy/information/statistics/2010/ as of July 20, 2012.



Figure 3-9. National Network for Conventional Combination Trucks: 2011




The National Network was established by Congress in 1982 to facilitate interstate commerce and encourage regional and national economic growth by requiring states to allow conventional combination trucks on the Interstate System and portions of the Federal-aid Primary System of highways. The National Network, which is approximately 200,000 miles in length, has not changed significantly in three decades.

FIGURE 3-9. NATIONAL NETWORK FOR CONVENTIONAL COMBINATION TRUCKS: 2011 Source: 23 CFR Part 658, Appendix A, as of September 3, 2012.



Longer combination vehicles (LCVs) include truck tractors pulling a long semi-trailer and a short trailer (often called a Rocky Mountain Double), a long semi-trailer and a long trailer (often called a Turnpike Double) or a short semi-trailer and two trailers (called a Triple). Although all states allow conventional combinations consisting of a 28-foot semitrailer and a 28-foot trailer, only 14 states and 6 state turnpike authorities allow LCVs on at least some parts of their road networks. Allowable routes for LCVs have been frozen since 1991.





# Table 3-10. Trucks, Truck Miles, and Average Distance by Range of Operations and Jurisdictions: 2002

|                                   | Number of<br>Trucks<br>housands) | Truck Miles<br>(millions) | Miles per Truck<br>(thousands) |
|-----------------------------------|----------------------------------|---------------------------|--------------------------------|
| Total                             | 5,521                            | 145,173                   | 26                             |
| Off the road                      | 183                              | 2,263                     | 12                             |
| 50 miles or less                  | 2,942                            | 42,531                    | 15                             |
| 51 to 100 miles                   | 685                              | 19,162                    | 28                             |
| 101 to 200 miles                  | 244                              | 11,780                    | 48                             |
| 201 to 500 miles                  | 232                              | 17,520                    | 76                             |
| 501 miles or more                 | 293                              | 26,706                    | 91                             |
| Not reported                      | 716                              | 25,061                    | 35                             |
| Not applicable                    | 226                              | 150                       | 1                              |
| Operated in Canada                | 2                                | 72                        | 43                             |
| Operated in Mexico                | 2                                | 29                        | 19                             |
| Operated within the home base sta | ate 4,196                        | 84,974                    | 20                             |
| Operated in states other than the |                                  |                           |                                |
| home base state                   | 496                              | 40,901                    | 83                             |
| Not reported                      | 599                              | 19,046                    | 32                             |
| Not applicable                    | 226                              | 150                       | 1                              |

Notes: Includes trucks registered to companies and individuals in the United States except pickups, minivans, other light vans, and sport utility vehicles. Numbers may not add to totals due to rounding.

Most trucks larger than pickups, minivans, other light vans, and sport utility vehicles typically operate close to home. About one-half of all trucks usually travel to destinations within 50 miles of their base, and three-fourths stayed within their base state. Less than 10 percent of trucks larger than pickups, minivans, other light vans, and sport utility vehicles typically travel to places more than 200 miles away, but these trucks account for 30 percent of the mileage.

August 5, 2012.

TABLE 3-10. TRUCKS, TRUCK MILES, AND AVERAGE DISTANCE BY RANGE OF OPERATIONS AND JURISDICTIONS: 2002 Source: U.S. Department of Commerce, Census Bureau, 2002 Vehicle Inventory and Use Survey: United States, EC02TV-US, table 3a (Washington, DC: 2004), available at www.census.gov/prod/ec02/ec02tv-us.pdf as of

Approximately three-fourths of the miles traveled by trucks larger than pickups, minivans, and other light vans are for the movement of products that range from electronics to sand and gravel. Most of the remaining mileage is for empty backhauls and empty shipping containers.

# Table 3-11. Truck Miles by Products Carried: 2002

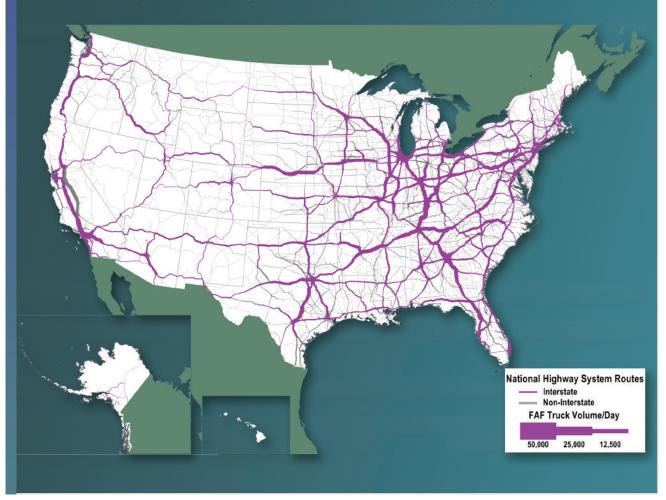
F

т

| Products carried                                           | illions of<br>miles |
|------------------------------------------------------------|---------------------|
| Total <sup>1</sup>                                         | 145,173             |
| Animals and fish, live                                     | 735                 |
| Animal feed and products of animal origin                  | 2,088               |
| Grains, cereal                                             | 1,368               |
| All other agricultural products                            | 2,661               |
| Basic chemicals                                            | 876                 |
| Fertilizers and fertilizer materials                       | 1,666               |
| Pharmaceutical products                                    | 305                 |
| All other chemical products and preparations               | 1,351               |
| Alcoholic beverages                                        | 1,124               |
| Bakery and milled grain products                           | 3,553               |
| Meat, seafood, and their preparations                      | 3,056               |
| Tobacco products                                           | 445                 |
| All other packaged foodstuffs                              | 7,428               |
| Logs and other wood in the rough                           | 1,149               |
| Paper or paperboard articles                               | 3,140               |
| Printed products                                           | 765                 |
| Pulp, newsprint, paper, paperboard                         | 1,936               |
| Wood products                                              | 3,561               |
| Articles of base metal                                     | 3,294               |
| Base metal in primary or semifinished forms                | 2,881               |
| Nometallic mineral products                                | 3,049               |
| Tools, nonpowered                                          | 7,759               |
| Tools, powered                                             | 6,478               |
| Electronic and other electrical equipment                  | 3,024               |
| Furniture, mattresses, lamps, etc.                         | 2,043               |
| Machinery                                                  | 3,225               |
| Miscellaneous manufactured products                        | 4,008               |
| Precision instruments and apparatus                        | 734                 |
| Textile, leather, and related articles                     | 1,538               |
| Vehicles, including parts                                  | 3,844               |
| All other transportation equipment                         | 636                 |
| Coal                                                       | 301                 |
| Crude petroleum                                            | 132                 |
| Gravel or rushed stone                                     | 2,790               |
| Metallic ores and concentrates                             | 45                  |
| Monumental or building stone                               | 462                 |
| Natural sands                                              | 1,089               |
| All other nonmetallic minerals                             | 499                 |
| Fuel oils                                                  | 1,232               |
| Gasoline and aviation turbine fuel                         | 849                 |
| Plastic and rubber                                         | 2,393               |
| All other coal and refined petroleum products              | 1,172               |
| Hazardous waste (EPA manifest)                             | 190                 |
| All other waste and scrape (non-EPA manifest)              | 2,647               |
| Recyclable products                                        | 922                 |
| Mail and courier parcels                                   | 4,760               |
| Empty shipping containers                                  | 794                 |
| Passengers                                                 | 274                 |
| Mixed freight                                              | 14,659              |
| Products, equipment, or materials not elsewhere classified |                     |
| Products not specified                                     | 6,358               |
| Not applicable <sup>2</sup>                                | 150                 |
| No product carried                                         | 28,977              |

'Excludes pickups, minivans, other light vans, and sport utility vehicles.

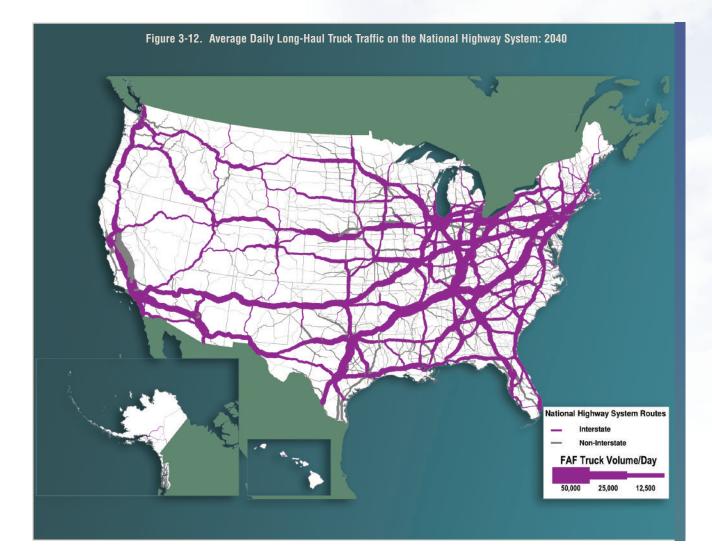
<sup>2</sup>Detail lines may not add to total because multiple products/hazardous materials may be carried at the same time.

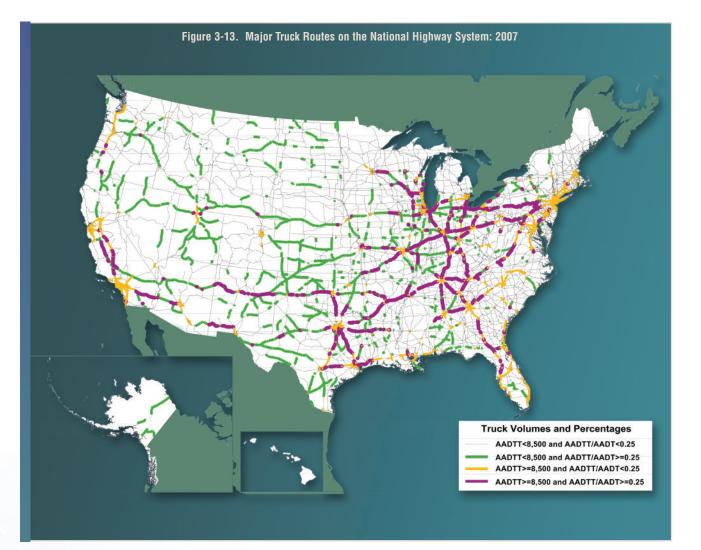

<sup>a</sup>Vehicles not in use. When the survey respondent had partial-year ownership of the vehicle, annual miles were adjusted to reflect miles traveled when not owned by the respondent

#### TABLE 3-11. TRUCK MILES BY PRODUCTS CARRIED: 2002

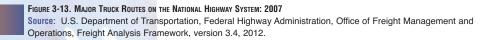
Source: U.S. Department of Commerce, Census Bureau, 2002 Vehicle Inventory and Use Survey: United States, EC02TV-US (Washington, DC: 2004), available at www.census.gov/prod/ec02/ec02tv-us.pdf as of August 5, 2012.

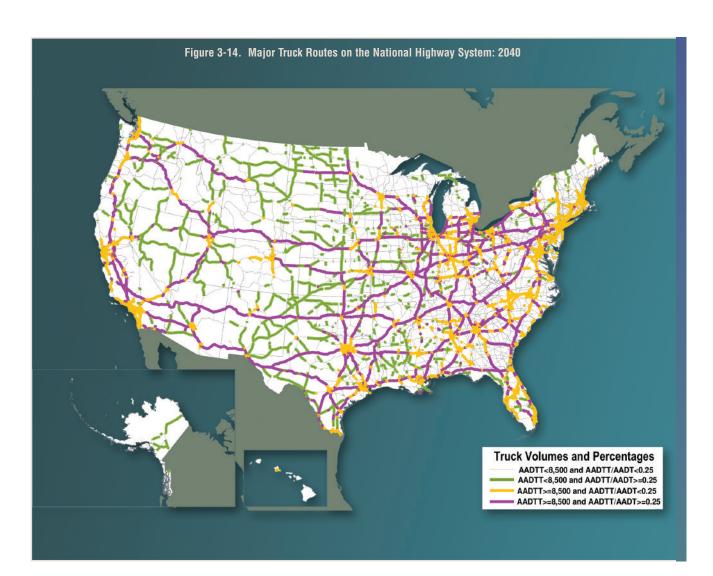



Figure 3-11. Average Daily Long-Haul Truck Traffic on the National Highway System: 2007




Long-haul freight truck traffic in the United States is concentrated on major routes connecting population centers, ports, border crossings, and other major hubs of activity. Except for Route 99 in California and a few toll roads and border connections, most of the heaviest traveled routes are on the Interstate System.

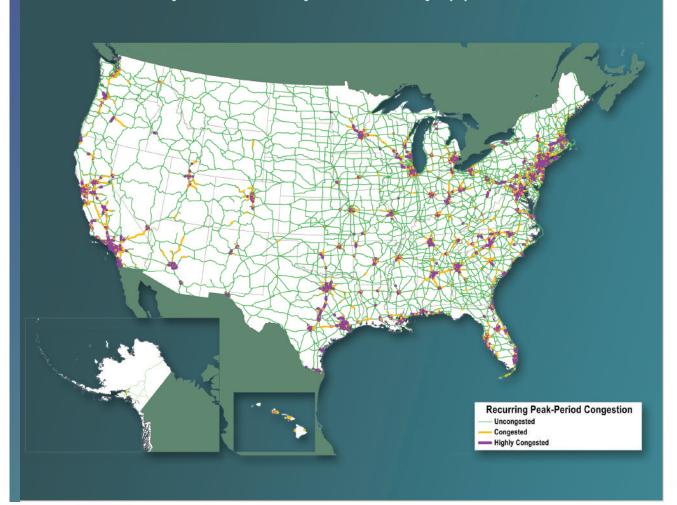




FIGURE 3-11. AVERAGE DAILY LONG-HAUL TRUCK TRAFFIC ON THE NATIONAL HIGHWAY SYSTEM: 2007 Source: U.S. Department of Transportation, Federal Highway Administration, Office of Freight Management and Operations, Freight Analysis Framework, version 3.4, 2012. By 2040, long-haul freight truck traffic in the United States is expected to increase dramatically on the National Highway System. Forecast data indicate that truck travel may reach 590 million miles per day.





Selected routes carry a significant concentration of trucks, either as an absolute number or as a percentage of the traffic stream. Nearly 6,000 miles of the National Highway System (NHS) carry more than 8,500 trucks per day on sections where at least every fourth vehicle is a truck. With each truck carrying an average of 16 tons of cargo, 8,500 trucks per day haul approximately 50 million tons per year.






The number of NHS miles carrying large volumes and high percentages of trucks is forecast to increase dramatically by 2040. Segments with more than 8,500 trucks per day and where at least every fourth vehicle is a truck are forecast to reach 22,600 miles, an increase of more than 250 percent from 2007.



Figure 3-15. Peak-Period Congestion on the National Highway System: 2007



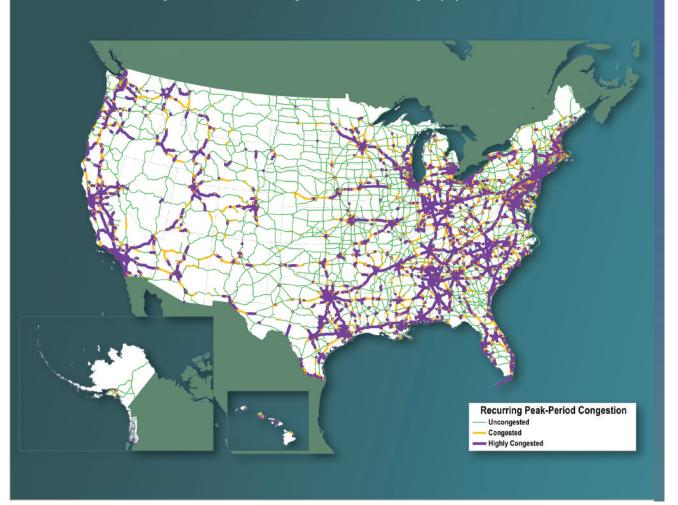
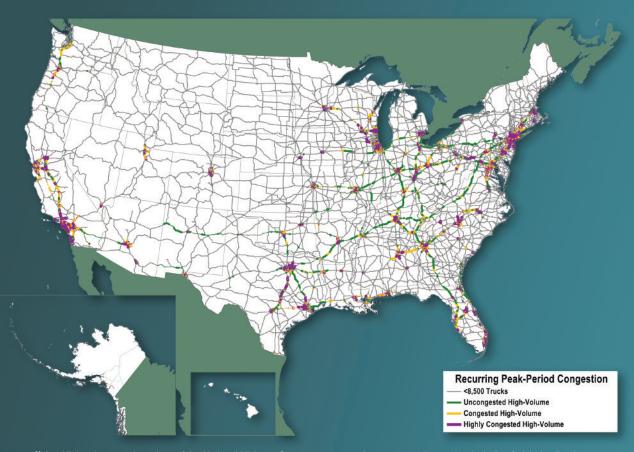
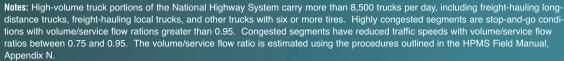

Recurring congestion caused by volumes of passenger vehicles and trucks that exceed capacity on roadways during peak periods is concentrated primarily in major metropolitan areas. In 2007, peak-period congestion resulted in traffic slowing below posted speed limits on 11,700 miles of the NHS and created stop-and-go conditions on an additional 6,700 miles.



FIGURE 3-15. PEAK-PERIOD CONGESTION ON THE NATIONAL HIGHWAY SYSTEM: 2007

Source: U.S. Department of Transportation, Federal Highway Administration, Office of Highway Policy Information, Highway Performance Monitoring System, and Office of Freight Management and Operations, Freight Analysis Framework, version 3.4, 2012.


Figure 3-16. Peak-Period Congestion on the National Highway System: 2040




Assuming no changes in network capacity, increases in truck and passenger vehicle traffic are forecast to expand areas of recurring peak-period congestion to 37 percent of the NHS in 2040 compared with 11 percent in 2007. This will slow traffic on 21,000 miles of the NHS and create stop-and-go conditions on an additional 40,000 miles.

PL F

Figure 3-17. Peak-Period Congestion on High-Volume Truck Portions of the National Highway System: 2007





Congested highways carrying a large number of trucks substantially impede interstate commerce, and trucks on those segments contribute significantly to congestion. Recurring congestion slows traffic on 4,700 miles and creates stop-and-go conditions on 3,700 miles of the NHS that carry more than 8,500 trucks per day.

FIGURE 3-17. PEAK-PERIOD CONGESTION ON HIGH-VOLUME TRUCK PORTIONS OF THE NATIONAL HIGHWAY SYSTEM: 2007 Source: U.S. Department of Transportation, Federal Highway Administration, Office of Highway Policy Information, Highway Performance Monitoring System, and Office of Freight Management and Operations, Freight Analysis Framework, version 3.4, 2012. Assuming no change in network capacity, the number of NHS miles with recurring congestion and a large number of trucks is forecast to increase significantly between 2007 and 2040. On highways carrying more than 8,500 trucks per day, recurring congestion will slow traffic on close to 8,100 miles and create stop-and-go conditions on an additional 26,800 miles.

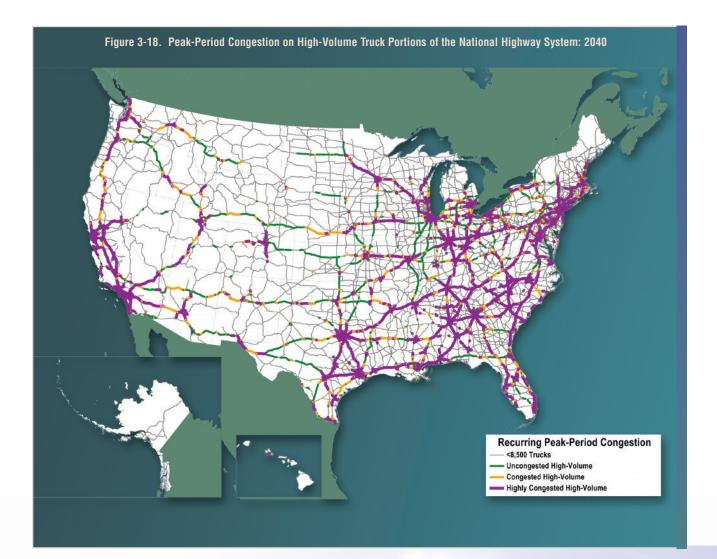
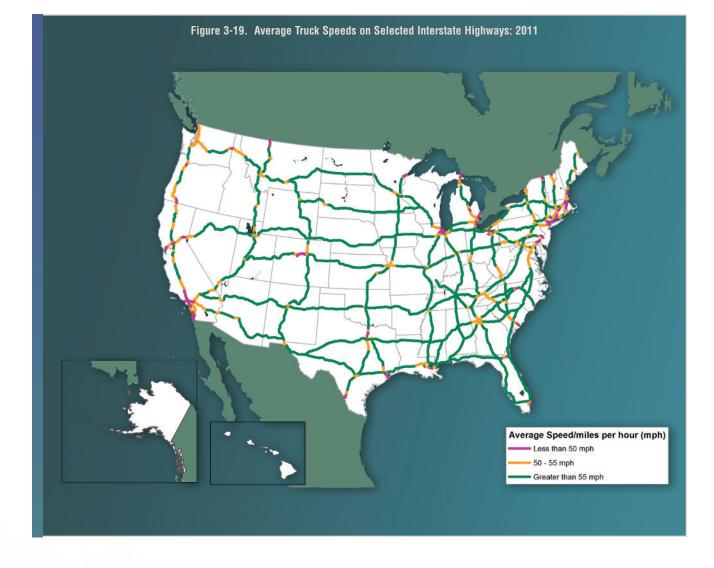
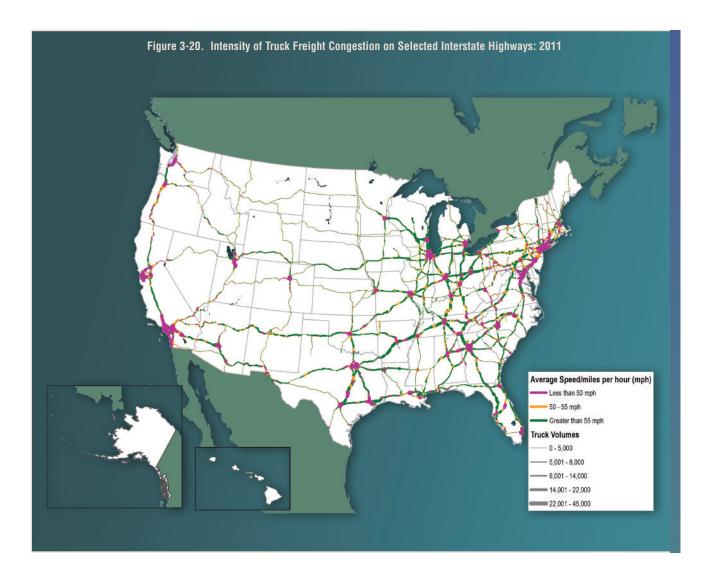




 TABLE 3-18. PEAK-PERIOD CONGESTION ON HIGH-VOLUME TRUCK PORTIONS OF THE NATIONAL HIGHWAY SYSTEM: 2040

 Source:
 U.S. Department of Transportation, Federal Highway Administration, Office of Highway Policy Information, Highway Performance Monitoring System, and Office of Freight Management and Operations, Freight Analysis


 Framework, version 3.4, 2012.



In addition to calculating peak-period congestion from traffic volumes, as shown in other figures, the Federal Highway Administration (FHWA), in cooperation with private industry, measures the speed and travel time reliability of more than 500,000 trucks on 25 freight-significant corridors on an annual basis. Average truck speeds drop below 55 miles per hour (mph) near major urban areas, border crossings and gateways, and in mountainous terrain.



To better understand the intensity of truck congestion and reliably issues, FHWA combined truck volumes from the Freight Analysis Framework with average truck speeds measured in the Freight Performance Measurement Program. This type of information is useful to private- and public-sector freight stakeholders that wish to better understand the severity of congestion and mobility constraints experienced along the highway transportation system. Many major urban areas have Interstates with significant truck volumes that are experiencing average speeds of less than 55 mph.





|                                           |                       |                           |                                             | •                                               |                           |
|-------------------------------------------|-----------------------|---------------------------|---------------------------------------------|-------------------------------------------------|---------------------------|
| Location                                  | Congestion<br>Ranking | Average<br>Speed<br>(mph) | Peak<br>Period<br>Average<br>Speed<br>(mph) | Non-Peak<br>Period<br>Average<br>Speed<br>(mph) | Non-Peak<br>Peal<br>Ratio |
| Chicago, IL: I-290 at I-90/I-94           | 1                     | 30.09                     | 22.44                                       | 33.01                                           | 1.47                      |
| Fort Lee, NJ: I-95 at SR-4                | 2                     | 31.29                     | 23.86                                       | 34.76                                           | 1.46                      |
| Louisville, KY: I-65 at I-64/I-71         | 3                     | 40.51                     | 31.95                                       | 44.84                                           | 1.40                      |
| Austin , TX: I-35                         | 4                     | 34.87                     | 20.69                                       | 43.37                                           | 2.10                      |
| Atlanta, GA: I-285 at I-85 (North)        | 5                     | 44.69                     | 33.74                                       | 50.20                                           | 1.49                      |
| Chicago, IL: I-90 at I-94 (North)         | 6                     | 34.46                     | 21.56                                       | 40.41                                           | 1.87                      |
| Dallas, TX: I-45 at I-30                  | 7                     | 40.50                     | 31.60                                       | 44.26                                           | 1.40                      |
| Los Angeles, CA: SR-60 at SR-57           | 8                     | 47.38                     | 39.27                                       | 50.56                                           | 1.29                      |
| Cincinnati, OH: I-71 at I-75              | 9                     | 46.46                     | 37.52                                       | 50.18                                           | 1.34                      |
| Denver, CO: I-70 at I-25                  | 10                    | 42.25                     | 34.40                                       | 46.10                                           | 1.34                      |
| St. Louis, MO: I-70 at I-64 (West)        | 11                    | 44.21                     | 39.17                                       | 46.35                                           | 1.1                       |
| Indianapolis, IN: I-65 at I-70 North      | 12                    | 50.69                     | 46.44                                       | 52.37                                           | 1.13                      |
| Atlanta, GA: I-75 at I-285 (North)        | 13                    | 49.54                     | 40.31                                       | 53.56                                           | 1.3                       |
| Houston, TX: I-610 at US 290              | 14                    | 47.52                     | 39.18                                       | 51.43                                           | 1.3                       |
| Houston, TX: I-10 at I-45                 | 15                    | 47.58                     | 40.20                                       | 50.86                                           | 1.2                       |
| Ft. Worth, TX: I-35W at I-30              | 16                    | 45.30                     | 37.48                                       | 48.85                                           | 1.30                      |
| Houston, TX: I-45 at US-59                | 17                    | 38.49                     | 28.76                                       | 43.53                                           | 1.5                       |
| Nashville, TN: I-24 at I-440N Interchange | 18                    | 48.62                     | 39.58                                       | 52.79                                           | 1.3                       |
| Indianapolis, IN: I-65 at I-70 South      | 19                    | 50.98                     | 47.56                                       | 52.28                                           | 1.10                      |
| Los Angeles, CA: I-710 at I-105           | 20                    | 45.78                     | 35.88                                       | 50.03                                           | 1.39                      |
| Buffalo-Niagara Falls, NY: I-90 at I-290  | 21                    | 44.04                     | 40.98                                       | 45.51                                           | 1.1                       |
| Washington , DC: I-495 at I-66            | 22                    | 38.87                     | 32.26                                       | 41.09                                           | 1.2                       |
| Philadelphia, PA: I-76 at US-30           | 23                    | 36.14                     | 29.52                                       | 38.83                                           | 1.32                      |
| Dallas, TX: US 75 at I-635                | 24                    | 46.61                     | 35.82                                       | 51.29                                           | 1.43                      |
| Houston, TX: I-45 at I-610 north          | 25                    | 48.94                     | 41.60                                       | 52.25                                           | 1.20                      |

#### Table 3-12. Top 25 Truck Bottlenecks on Freight-Significant Highways: 2011

Key: mph = miles per hour.

**Notes:** FHWA monitors 250 freight-significant highway infrastructure locations on an annual basis. These locations were identified over several years through reviews of past research, available highway speed and volume datasets, and surveys of private- and public-sector stakeholders. FHWA developed a freight congestion index to rank congestion's impact on freight. The index factors in the number of trucks using a particular highway facility and the impact that congestion has on average commercial vehicle speed in each of the 250 study areas. These data represent truck travel during weekdays at all hours of the day in 2011. Average speeds below a free flow of 55 miles per hour indicate congestion.

Truck speed and travel time reliability data can be used to identify and quantify major freight truck chokepoints and bottlenecks along highways that are critical to the Nation's freight transportation system. FHWA developed a freight congestion index that ranks congestion's impact on freight movement. The index factors in both the number of trucks using a particular highway facility and the impact that congestion has on the average speed of those vehicles

On weekdays, average speeds during peak periods (between 6:00 a.m. and 9:00 a.m. and between 4:00 p.m. and 7:00 p.m.) are typically less than those recorded during non-peak





periods. Freight traveling across urban Interstate interchanges is affected to the greatest degree by peak-period congestion. At several locations, congestion affects freight mobility during all hours of the day.

Several monitored locations have recorded significant improvements in performance from 2010 to 2011 when looking at averages over 24 hours.

|                                            | Average Speed<br>(mph) |       | Peak Period Average Speed<br>(mph)    |       | Non-Peak Period Average Speed<br>(mph) |                                       |       |       |                                       |
|--------------------------------------------|------------------------|-------|---------------------------------------|-------|----------------------------------------|---------------------------------------|-------|-------|---------------------------------------|
| Location                                   | 2010                   | 2011  | Percent<br>change,<br>2010 to<br>2011 | 2010  | 2011                                   | Percent<br>change,<br>2010 to<br>2011 |       | 2011  | Percent<br>change,<br>2010 to<br>2011 |
| Minneapolis-St. Paul, MN: I-35 W at 62 E-W | 40.70                  | 50.13 | 23.2                                  | 33.24 | 42.76                                  | 28.7                                  | 44.27 | 53.83 | 21.6                                  |
| Houston, TX: I-10 at US 59                 | 41.01                  | 48.85 | 19.1                                  | 31.02 | 40.23                                  | 29.7                                  | 46.41 | 53.10 | 14.4                                  |
| Houston, TX: I-10 at I-45                  | 41.28                  | 47.58 | 15.3                                  | 32.18 | 40.20                                  | 24.9                                  | 45.51 | 50.86 | 11.7                                  |
| Chicago, IL: I-290 at I-355                | 47.66                  | 54.12 | 13.5                                  | 43.17 | 52.01                                  | 20.5                                  | 49.48 | 54.95 | 11.0                                  |
| Kansas City, MO: I-70 at I-670 at US71     | 43.70                  | 48.36 | 10.7                                  | 42.33 | 46.98                                  | 11.0                                  | 44.20 | 48.88 | 10.6                                  |

 TABLE 3-13. LARGEST IMPROVEMENTS IN AVERAGE SPEED FOR CONCESTED FREIGHT HIGHWAY LOCATIONS: 2011

 Source:
 U.S. Department of Transportation, Federal Highway Administration, Office of Freight Management and Operations, Freight Performance Measurement Program, special tabulation, 2012.

Delay, reliability, and similar performance measures are typically based on the difference between speed limits and actual speeds. Speed limits for trucks vary from state to state and differ from limits set for passenger vehicles in nine states.

# Table 3-14. Maximum Posted Speed Limits on Rural Interstates: 2012

| State                             | Truck           | Car             |
|-----------------------------------|-----------------|-----------------|
| Alabama                           | 70              | 70              |
| Alaska                            | 65              | 65              |
| Arizona                           | 75              | 75              |
| Arkansas                          | 65              | 70              |
| California                        | 55              | 70              |
| Colorado                          | 75              | 75              |
| Connecticut                       | 65              | 65              |
| Delaware                          | 65              | 65              |
| District of Columbia <sup>1</sup> | 55              | 55              |
| Florida                           | 70              | 70              |
| Georgia                           | 70              | 70              |
| Hawaii                            | 60              | 60              |
| Idaho                             | 65              | 75              |
| Illinois                          | 65              | 65              |
| Indiana                           | 65              | 70              |
| lowa                              | 70              | 70              |
| Kansas                            | 70              | 70              |
| Kentucky                          | 65 <sup>2</sup> | 65              |
| Louisiana                         | 75              | 75              |
| Maine                             | 75              | 75              |
| Maryland                          | 65              | 65              |
| Massachusetts                     | 65              | 65              |
| Michigan                          | 60              | 70              |
| Minnesota                         | 70              | 70              |
| Mississippi                       | 70              | 70              |
| Missouri                          | 70              | 70              |
| Montana                           | 65              | 75              |
| Nebraska                          | 75              | 75              |
| Nevada                            | 75              | 75              |
| New Hampshire                     | 65              | 65              |
| New Jersey                        | 65              | 65              |
| New Mexico                        | 75              | 75              |
| New York                          | 65              | 65              |
| North Carolina                    | 70              | 70              |
| North Dakota                      | 70              | 70              |
| Ohio                              | 75<br>65        | <sup>3</sup> 65 |
|                                   | 75              | 00<br>75        |
| Oklahoma                          |                 |                 |
| Oregon                            | 55              | 65              |
| Pennsylvania                      | 65              | 65              |
| Rhode Island                      | 65              | 65              |
| South Carolina                    | 70              | 70              |
| South Dakota                      | 75              | 75              |
| Tennessee                         | 70              | 70              |
| Texas                             | 70 <sup>4</sup> | 75              |
| Utah                              | 75 <sup>5</sup> | 75              |
| Vermont                           | 65              | 65              |
| Virginia                          | 70 <sup>6</sup> | 70              |
| Washington                        | 60              | 70              |
| West Virginia                     | 70              | 70              |
| Wisconsin                         | 65              | 65              |
| Wyoming                           | 75              | 75              |

<sup>1</sup>Urban Interstate.

<sup>2</sup>Effective July 10, 2007, the posted speed limit is 70 miles per hour (mph) in designated areas on I-75 and I-71.

<sup>3</sup>The posted speed limit is 70 mph on the Ohio Turnpike.

<sup>4</sup>In sections of I-10 and I-20 in rural West Texas, the speed limit for passenger cars and light trucks is 80 mph. For large trucks, the speed limit is 70 mph in the daytime and 65 mph at night. For cars, it is also 65 mph at night.

<sup>5</sup>Portions of I-15 have a posted limit of 80 mph. <sup>6</sup>Effective July 1, 2010, the posted limit may be as high as 70 mph where indicated by lawfully placed signs, erected subsequent to a traffic engineering study.



TABLE 3-14. MAXIMUM POSTED SPEED LIMITS ON RURAL INTERSTATES: 2012

Source: Insurance Institute for Highway Safety, Maximum Posted Speed Limits for Passenger Vehicles, available at www.iihs.org/laws/speedlimits.aspx as of July 20, 2012.

Analysis has shown truck speed and reliability decrease in urban areas. FHWA uses Freight Performance Measurement Program data to measure truck speeds within 14 very large Census Metropolitan Statistical Areas. In 2011, five of the fourteen metropolitan areas had average truck speeds of less than 50 mph on their Interstates.

#### Table 3-15. Average Truck Speeds on Selected Metropolitan Interstates: 2011 (miles per hour)

| Metropolitan Area | Quarter 1 | Quarter 2 | Quarter 3 | Quarter 4 |
|-------------------|-----------|-----------|-----------|-----------|
| Atlanta, GA       | 53.50     | 53.91     | 53.78     | 53.70     |
| Boston, MA        | 47.36     | 48.01     | 47.67     | 46.85     |
| Chicago, IL       | 51.40     | 50.37     | 50.09     | 51.46     |
| Dallas, TX        | 54.89     | 55.49     | 55.31     | 55.41     |
| Detroit, MI       | 48.46     | 49.58     | 49.38     | 49.21     |
| Houston, TX       | 53.62     | 54.16     | 52.79     | 53.51     |
| Los Angeles, CA   | 43.32     | 43.28     | 43.10     | 42.55     |
| Miami, FL         | 56.98     | 56.99     | 57.26     | 56.78     |
| New York, NY      | 50.47     | 50.90     | 50.37     | 50.73     |
| Philadelphia, PA  | 47.05     | 46.59     | 47.02     | 47.26     |
| Phoenix, AZ       | 57.13     | 57.01     | 56.91     | 57.62     |
| San Francisco, CA | 47.57     | 46.78     | 46.08     | 44.46     |
| Seattle, WA       | 50.91     | 51.61     | 51.19     | 51.39     |
| Washington, DC    | 54.97     | 53.94     | 53.66     | 54.35     |

Intercity travel-time reliability is a key freight performance measure. It influences logistics, operational strategies, and load optimization. FHWA analyzed the truck trip reliability of 22 top freight origins and destinations. Travel time between San Diego and Los Angeles

Table 3-16. Truck Trip Reliability as Indicated by Minimum and Maximum Travel Times Between Selected City-Pairs: January-March 2012 Maximum/ Maximum/ Northbound/ Southbound/ Minimum Southbound/ Northbound/ Minimum Eastbound Eastbound Percent Westbound Westbound Percent Change LOCATION Minimum Maximum Minimum Maximum Change Atlanta, GA - Savannah, GA 3:55:15 4:17:30 9.46 3:56:00 4:13:33 7.44 Chicago, IL - Milwaukee, WI 1:31:00 1:54:06 25.38 1:31:00 2:22:21 56.43 Chicago, IL - Nashville, TN 7:37:53 8:07:31 7.39.03 8.09.19 6 5 9 6.47 Detroit, MI - Grand Rapids, MI 2:31:33 2:48:19 11.06 2:32:56 2:44:07 7.31 Houston, TX - Beaumont, TX 1:23:44 1:31:59 9.85 1:24:12 1:35:18 13.18 Houston, TX - Dallas, TX 3:42:40 4:17:48 15.78 3:43:07 4:13:14 13.50 Houston, TX - San Antonio, TX 3:06:17 3:37:32 3:06:01 3:34:27 16.78 15.29 Indianapolis, IN - Chicago, IL 3:01:07 3:23:58 12.62 3:01:12 3.22.36 13.47 Las Vegas, NV - Los Angeles, CA 4:14:04 5:18:51 25.50 4:13:51 4:46:54 13.02 Los Angeles, CA - San Francisco, CA 6:54:12 7:36:33 10.22 6:53:14 7:54:08 14.74 Miami, FL - Tampa, FL 4:30:59 5:36:42 24.25 4:33:44 5:08:28 12.69 Nashville, TN - Indianapolis, IN 4:36:32 4:59:56 8.46 4:37:15 5:06:23 10.51 New York, NY - Albany, NY 2:34:48 3:09:27 22.38 2:34:32 2:49:02 9.38 New York, NY - Buffalo, NY 7:07:44 7:24:49 7:08:00 7:47:03 9.12 3.99 New York, NY - Hartford, CT 1:53:03 2:35:56 37.93 1:51:13 2:29:56 34.81 2:30:31 Philadelphia, PA - New York, NY 1:48:39 38.53 1:50:40 2:38:12 42.95 Phoenix, AZ - Los Angeles, CA 6:13:09 7:11:22 6:18:12 6:56:05 10.02 15.60 Phoenix, AZ - Tucson, AZ 1:48:52 2:07:09 16.79 1:48:52 2:15:31 24.48 San Antonio, TX - Austin, TX 1:26:00 2:08:40 49.61 1:21:13 1:38:21 21.10 San Diego, CA - Los Angeles, CA 1:31:38 2:21:38 54.57 1:30:44 2:50:54 88.35 San Francisco, CA - Sacramento, CA 1:34:30 2:32:00 60.85 1:32:39 2:04:12 34.05 Seattle, WA - Portland, OR 3:30:49 2:53:40 2:54:37 20.73 3:30:53 21.43 Tampa, FL - Orlando, FL 1:21:05 1:41:19 24.95 1:21:05 1:51:24 37.39 Washington, DC - Baltimore, MD 0:52:40 1:10:41 34.21 0:53:25 1:13:00 36.66

**Notes:** Travel times are shown in hours, minutes, and seconds. The trip times were calculated between city centers using Interstate average travel speed data from the Freight Performance Measurement Program.

TABLE 3-15. AVERAGE TRUCK SPEEDS ON SELECTED METROPOLITAN INTERSTATES: 2011

Source: U.S. Department of Transportation, Federal Highway Administration, Office of Freight Management and Operations. Freight Performance Measurement Program. 2012.

TABLE 3-16. TRUCK TRIP RELIABILITY AS INDICATED BY MINIMUM AND MAXIMUM TRAVEL TIMES BETWEEN SELECTED CITY-PAIRS: JANUARY-MARCH 2012 Source: U.S. Department of Transportation, Federal Highway Administration, Office of Freight Management and Operations, Freight Performance Measurement Program, special tabulation, 2012.



| Location                                       | Direction           | Average<br>Minutes<br>per Mile |
|------------------------------------------------|---------------------|--------------------------------|
| Ambassador Bridge - Detroit, MI                | Inbound             | 6.16                           |
| Andassador Bridge - Detroit, Mi                | Outbound            | 4.22                           |
| Port Huron, MI                                 | Inbound             | 5.58                           |
|                                                | Outbound            | 4.19                           |
| Peace Bridge - Buffalo, NY                     | Inbound             | 5.34                           |
| ů ,                                            | Outbound            | 4.83                           |
| ewiston-Queenston Bridge - Lewiston, NY        | Inbound             | 4.63                           |
| <b>.</b>                                       | Outbound            | 4.46                           |
| Champlain, NY                                  | Inbound<br>Outbound | 4.94<br>3.68                   |
|                                                | Inbound             | 3.68                           |
| Blaine, WA                                     | Outbound            | 6.52                           |
|                                                | Inbound             | 5.28                           |
| Alexandria Bay, NY                             | Outbound            | 4.02                           |
|                                                | Inbound             | 5.73                           |
| Pembina, ND                                    | Outbound            | 4.62                           |
|                                                | Inbound             | 4.63                           |
| Derby, VT                                      | Outbound            | 3.54                           |
|                                                | Inbound             | 5.55                           |
| Calais, ME                                     | Outbound            | 3.77                           |
| Sumas, WA                                      | Inbound             | 6.56                           |
| Sumas, WA                                      | Outbound            | 5.13                           |
| Highgate, VT                                   | Inbound             | 3.58                           |
|                                                | Outbound            | 2.82                           |
| Houlton, ME                                    | Inbound             | 4.72                           |
|                                                | Outbound            | 2.98                           |
| Sweetgrass, MT                                 | Inbound             | 9.26                           |
|                                                | Outbound            | 7.41                           |
| lackman, ME                                    | Inbound<br>Outbound | 2.85<br>3.43                   |
| ote: Travel times are shown in hours, minutes, |                     |                                |

showed the greatest change, increasing nearly 55 minutes in the northbound direction and more than 88 minutes in the southbound direction. Other city pairs also showed large differences in travel-time reliability.

Border crossings are potential bottlenecks in the freight transportation network. FHWA monitors truck crossing times at 15 U.S.-

Canada border crossings. At all but two borders, transit times were longer for inbound U.S. traffic than for travel to Canada.

The U.S. Department of Transportation in partnership with the Texas Department of Transportation also measures transit times from Mexico to the Unites States at the Bridge



of the Americas and the Pharr-Reynosa International Bridge. The data are collected using radio frequency identification technology installed at the start of the crossing (typically the end of the queue) and at the vehicle safety inspection station exit (the end of the crossing trip). Vehicle identification information is anonymously collected and timestamped at each reader station, and travel time is calculated between the reader stations.

# Table 3-18. Average Truck Transit Time at Selected U.S.-Mexico Border Crossings: 2011

| Month     | Americas -<br>El Paso, Texas<br>(minutes) | International<br>Bridge - Pharr,<br>Texas (minutes) |
|-----------|-------------------------------------------|-----------------------------------------------------|
| January   | 55                                        | 57                                                  |
| February  | 48                                        | 66                                                  |
| March     | 64                                        | 73                                                  |
| April     | 60                                        | 65                                                  |
| May       | 57                                        | 63                                                  |
| June      | 45                                        | 60                                                  |
| July      | 47                                        | 52                                                  |
| August    | 40                                        | 53                                                  |
| September | 40                                        | 47                                                  |
| October   | 49                                        | 50                                                  |
| November  | 46                                        | 58                                                  |
| December  | 49                                        | 52                                                  |





 TABLE 3-18. AVERAGE TRUCK TRANSIT TIME AT SELECTED U.S.-MEXICO BORDER CROSSINGS: 2011

 Source:
 U.S. Department of Transportation, Federal Highway Administration, Office of Freight Management and Operations; U.S. Department of Transportation, Intelligent Transportation Systems Joint Program Office; and Texas Department of Transportation, 2012.