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Synopsis 
 
This paper describes the task of constructing a set of commodity class and mode specific 
annual origin-to-destination flows for the entire United States, covering to the extent 
feasible all domestic as well as all imported and exported goods.  The task takes as its 
starting point the 2002 U.S. Commodity Flow Survey and a number of supplemental data 
sources out of which a single commodity flow matrix is constructed. The product of this 
effort is a four dimensional matrix of flows that can be reported in annual tons, annual 
dollar value, and annual ton-miles, with the principal dimensions being:  
 

• shipment origination region (O) 
• shipment destination region (D) 
• the class of commodity being transported (C), and 
• the mode of transportation used (M) 

 
Having identified the problem to be solved, the paper describes how a log-linear 
modeling approach can be used to estimate missing values in the initial flow matrix, and 
how subsequent application of iterative proportional fitting can be applied to both 
reported and model-estimated flows to generate a complete O-D-C-M matrix that meets 
reported marginal flow totals. Preliminary results are presented for portions of the full 
flow matrix. Appealing features of the method include its ability to make full use of the 
available freight movement data, and its ability to draw in data from not other mode and 
commodity specific data sources where deemed useful to the estimation/data gap filling 
process. The paper also describes how the approach deals with the different types of zero 
valued cells found in large, sparse matrices, and proposes an approach to model 
validation in the absence of comparative data from other sources, especially where truck 
shipments are concerned. An appendix provides a fully worked numerical example of the 
log-linear modeling methodology used in estimating missing cell values. 
  



1. Purpose 
 
This paper describes and presents a numerical example of the commodity flow matrix 
gap-filling technique being applied to U.S. commodity flow data within the Freight 
Analysis Framework (FAF2) project. The Office of Operations, Freight Management and 
Operations, within the Federal Highway Administration (FWHA, U.S. Department of 
Transportation (USDOT) funded the project. The technique offers a flexible, reproducible 
and statistically based method for estimating missing cell values (i.e. missing origin-to-
destination flows) in large interaction matrices containing many empty cells. The 
principal data product of the project is a set of estimated annual flows of goods between 
all pairs of FAF geographic regions, by 43 specific classes of commodity and by specific 
transportation modes and mode combinations. Flows are reported in terms of annual 
tonnages transported, their associated dollar values, and ton-miles of activity. Commodity 
classes, transportation modes and geographic regions are all based on breakdowns used 
within the 2002 U.S. Commodity Flow Survey (CFS).1  
 
The need for data modeling described in this paper comes from the limited coverage that 
the CFS is able to provide, in terms of both the scope of the industry/commodity sectors 
it captures and also because the survey’s limited sample size prevents robust estimation 
of many of the origin-destination-commodity-and-mode (O-D-C-M) specific flow totals 
needed for freight planning studies. The data modeling approach described in the paper 
seeks to compensate for these weaknesses in the U.S. multimodal commodity flow 
picture by making full use of the statistical data available from: 
 

• the CFS and 
 

• other commodity flow datasets offering national, commodity specific, and/or 
mode specific coverage. 

 
Non-CFS data are used in two different ways, as shown in Figure 1.  The most important 
use of these data is as a supplement to the CFS movement estimates within each of its 43 
commodity classes. A great deal of additional commodity movement data is needed to 
complete the annual U.S. commodity flow picture. This “out-of-scope” (to the CFS) 
component of the FAF flows matrix constitutes over 40% of all freight moved within the 
nation. This includes freight moved by the following industrial sectors (all of which fall 
under one of the original 43 FAF/CFS commodity classes): 
 

• farm-based shipments 
• crude petroleum  
• in-transit goods 
• municipal solid waste products 
• logging 

                                                 
1. Census Bureau (2004) 2002 Commodity Flow Survey.  Report EC02TCF-US. US Department of 

Commerce, Economics and Statistics Administration, Suitland, MD. 
http://www.census.gov/econ/www/cfsnew.html 
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• fisheries 
• retail    
• construction  
• services 
• publishing 
• government   
• household and business moves  

 
Also used extensively, both as alternative sources of U.S. commodity flows and as a 
means of validating the FAF flows matrix, are a number of mode specific sources of 
based on nationwide carrier surveys. These data are referred to in Figure 1 as “non-CFS 
data alternatives” since they are used in the current approach to fill gaps in CFS coverage 
where it is clear that a sampling zero existed in the survey. For example, significant rail 
movement in the railcar waybill sample where a CFS zero valued cell exists is taken to 
indicate a CFS sampling rather than a CFS structural zero. These alternative data sources 
are in all cases data that cover many of the same flows captured by the CFS but reported 
in different ways and with different holes in them for FAF matrix construction purposes.2   
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Figure 1.  CFS In-Scope and Out-of-Scope Components of the FAF Flows Matrix 
 
Alternative data sources include the U.S. Surface Transportation Board (STB) annual 
railcar waybill dataset3, the U.S. Army Corps of Engineers (USACE) waterborne 

                                                 
2 In particular, being mode-dedicated, they do not provide true shipment origination and destination points: 
not containing any evidence of truck draying, often over significant distances and across regional 
boundaries, to airports, seaports, or other intermodal terminals 
3 http://www.stb.dot.gov/stb/industry/econ_waybill.html
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commerce dataset4, and the Bureau of Transportation Statistics’ T-100 Domestic and 
International Air Freight dataset. Each of these datasets has its weaknesses, but all 
provide a level of coverage whose scope is all commodities moved within each mode. 
The waterborne commerce data in particular are premised on a 100% sample of carrier 
responses, as are the air-freight data, although this dataset lacks commodity detail and 
reports only total revenue tons transported. The railcar waybill sample does an excellent 
job of capturing the largest rail movements in considerable commodity detail. Also used 
in this matrix enhancement process was a U.S. Census Bureau matrix of reported sample 
counts for each O-D-C-M cell in the CFS matrix. These data offered some additional 
insight into the presence of empty or very low valued cells that is difficult to extract from 
the publicly available CFS data tables.    
 
The methodology described in this paper allows these and other mode and commodity 
specific datasets to be used to enhance further the U.S. commodity flow picture.  
Commodity specific datasets such as the Energy Information Administration’s (EIA) 
data5 on annual U.S. coal shipments are good candidates for this exercise. Each of these 
data sources is described in detail in supporting FAF2 project documentation. They are 
also critiqued in references [1] through [4].  
 
Especially challenging is the problem posed by U.S. import and export shipments. The 
former are out of scope for the CFS, but it is unclear where such shipments cease to be 
imports and become U.S. company-based movements, and are therefore already being 
captured, at least in part, within the CFS domestic movements sample frame. The 
unanswered question within currently available data sources is whether these commodity 
movements change ownership at or near the U.S. seaport of entry, or after a lengthy 
inland transit. While export shipments by U.S. companies are a part of the CFS sample 
frame, known discrepancies between these data and other sources of U.S. foreign trade 
data raise questions about CFS robustness as a region-to-region data source. This means 
that modeling of both U.S. imports and exports (as well as in-transit shipments that cross 
U.S. territories but are never technically U.S. owned commodities) poses a non-trivial 
task when trying to fill in the complete U.S. freight movement picture. Imports and 
exports are discussed in more detail in Section 5. 
 
First, Section 2 defines the working dimensions of the FAF2 commodity flow matrix. 
Section 3 then describes the two principal methods used to construct the FAF flow matrix 
from the above referenced data sources: the log-linear modeling and iterative 
proportional fitting (IPF) routines shown in Figure 1. Section 4 provides the initial results 
of applying these routines to the above datasets. Sections 6 and 7 of the paper then 
discuss, respectively, model validation issues and ongoing extensions to the current flow 
matrix construction effort  
  

                                                 
4 http://www.iwr.usace.army.mil/ndc/wcsc/wcsc.htm
5 http://www.eia.doe.gov/cneaf/coal/page/coaldistrib/coaldistrib.html
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2. Problem Statement 
 
2.1 Problem Dimensions 
 
The complete FAF 2002 U.S. Commodity Flows Matrix contains 138 x 138 origin-to-
destination (O-D) region shipments, broken down by 43 commodity classes and by 7 
major mode/mode combinations. 
 
Table 1 lists the 43 FAF commodity classes and the 7 modes and mode combinations 
from which the initial FAF flows matrix has been created. Both sets mirror the classes 
used in the 2002 CFS. In total this represents the creation of a four-dimensional intra-
U.S. commodity flows matrix containing 5,732,244 cells (138 x 138 x 43 x 7). While the 
majority of these cells contain zero valued flows for “structural” reasons (e.g. no  

 4



                Table 1. FAF Commodity & Mode Disaggregations
SCTG 
Code Commodity Classes Transportation Modes

01 Live animals and live fish 01 Truck
02 Cereal grains      Private truck 
03 Other agricultural products      For-hire truck
04 Animal feed and products of animal origin, n.e.c. 02 Rail
05 Meat, fish, seafood, and their preparations 03 Water
06 Milled grain products and preparations, and     Shallow draft 

bakery products     Great Lakes
07 Other prepared foodstuffs and fats and oils    Deep draft
08 Alcoholic beverages 04 Air (inc. truck-air)
09 Tobacco products 05 Truck-Rail Intermodal 
10 Monumental or building stone 06 Other Multiple Modes
11 Natural sands      Including:  

      Parcel, USPS or courier
      Truck-water  
      Water-rail    

12 Gravel and crushed stone  
13 Nonmetallic minerals n.e.c.  
14 Metallic ores and concentrates  
15 Coal
16 Crude Petroleum 

07 Other and Unknown modes 
   Including pipeline 
 17 Gasoline and aviation turbine fuel

18 Fuel oils
19 Coal and petroleum products, n.e.c.
20 Basic chemicals
21 Pharmaceutical products
22 Fertilizers
23 Chemical products and preparations, n.e.c.
24 Plastics and rubber
25 Logs and other wood in the rough
26 Wood products
27 Pulp, newsprint, paper, and paperboard
28 Paper or paperboard articles
29 Printed products 
30 Textiles, leather, and articles of textiles or leather
31 Nonmetallic mineral products
32

 
Base metal in primary or semifinished forms and 
in finished basic shapes

33 Articles of base metal 
34 Machinery
35

 
Electronic and other electrical equipment
and components and office equipment

36 Motorized and other vehicles (including Parts)
37 Transportation equipment, n.e.c.
38 Precision instruments and apparatus
39

 
Furniture, mattresses and mattress supports,
lamps, lighting fittings, etc.

40 Miscellaneous manufactured products
41 Waste and scrap
43 Mixed freight
— Commodity unknown
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flows of commodities out of regions that do not produce them, no truck or rail trips into 
and out of Hawaii, etc.), there are still a significant number of cell values that need to be 
estimated: and even a matrix requiring 5% of the cells to be filled requires an estimated 
value for over half a million cells. Not all missing cell values need to be solved for at 
once: although a single approach that captures all statistical effects is certainly preferable. 
 
To better model truck shipments, the mode with the largest data gaps, the procedure 
incorporates an additional, shipment distance-based dimension to help with the cell value 
estimation process (see below). An additional, temporal dimension that combines data 
from the 1993, 1997 and 2002 CFS surveys may also prove valuable in the future for 
generating more robust cell values across all mode/commodity categories. The initial 
FAF matrix uses 2002 dated CFS data only.      
 
2.2 Nature of the Missing Data 
 
CFS Data Tables A combination of data suppression for confidentiality reasons, limited 
sample size, and limitations to the scope of the CFS (across industrial sectors) mean that 
many cells that ought to contain a flow are empty. The questions that require answers are 
what size each of these flows should be and which cells ought to contain a positive flow 
at all.  It should also be noted that even when the data are summed across a particular row 
or column in the CFS O-D-C-M matrix, sometimes data are missing data for these two as 
well as three dimensional margins, and not just data on the four-dimensional flows 
sought. A study of the complete set of 2002 CFS data products indicates that there are a 
good many data matrices to work with. This includes the most detailed of the published 
matrices, Table 17, which reports annual tons, dollar value and ton-miles shipped by state 
of origin, state of destination, mode and 2-digit (43) commodity classes.6  Other tables 
provide 1, 2 and 3 dimensional looks at this same data, including flows broken down to 
the 114 CFS/FAF intra-US geographic regions of interest.  Without going through the 
contents of each data table the gaps in current CFS coverage can be summarized as 
follows: 
  

• commodity specific annual shipment generation and attraction totals exist but 
there are no origin-to-destination (O-D) flow estimates, either by mode or 
summed over all modes  

 
• total annual O-D commodity flow estimates exist but without any modal 

breakdown. 
 

• modal share estimates exist but lack the geographic and/or commodity detail 
required of the FAF flows matrix. 

 
• data on shipment lengths exists, by mode and/or commodity, but with little or no 

linkage to O-D geography.  
 
                                                 
6 http://www.census.gov/svsd/www/02CFSdata.html
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That is, a flow matrix is available that contains a variety of levels of coverage of its 1, 2, 
3 and 4-dimensional data elements, with many gaps in it.  
 
 
3. Matrix Generation Methodology 
 
3.1 Requirements of the Method 
 
 An ideal method for filling missing cells in the FAF flow matrix is considered to display 
the following characteristics: 
 

1. the ability to make the most use of existing data within the matrix in the 
estimation of missing cell values 

 
2. the ability to bring different, including non-CFS sources of flow estimates into the 

solution, including completely new one, two and three-dimensional data tables, as 
needed 

 
3. the ability to fill in missing cell values while maintaining reported marginal flow 

totals and observed cell values across all dimensions of the matrix 
 
4. the ability to handle missing values at multiple levels of data aggregation 

 
Although a number of gap-filling methods exist, a combination of iterative proportional 
fitting and log-linear modeling (including spatial interaction modeling) was found to 
offer each of the above features. This approach can also be used to update the flow matrix 
on an annual or longer-range basis given reported or forecast changes in marginal flow 
totals. The method used expands the FAF matrix problem by three additional dimensions, 
as described below. 
 
3.2 Iterative Proportional Fitting 
 
Automated methods for estimating cell values in large and multi-dimensional matrices 
often involve some form of iterative proportional fitting, or IPF: a matrix-balancing 
technique that has been in use for over half a century [5, 6].  Consider the simplest two-
dimensional case, in which O(i) and D(j) are a set of row (i) and column (j) totals 
respectively (e.g. annual freight tons produced at each i and consumed at each j), and 
where T(i,j) = the tons of freight shipped from region i to region j annually. 
Mathematically, a simple IPF routine applied to this problem can be stated as: 
 
T(i ,j, r+1) =    T(i ,j, r)/ ∑j  T (i ,j, r)   *  O(i)     (1) 
 
T(i ,j, r+2) =    T(i ,j, r+1)/ ∑i T (i ,j, r+1)   *  D(j)     (2) 
 
where r, r+1 and  r+2 refer to successive iterations, and where equations (1) and (2) can  
be applied iteratively until at some iteration r+g is gotten: 
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 ∑j T (i ,j, r+g) = O(i) for all i, and  ∑i T(i ,j, r+g)  = D(j) for all j                (3) 
 
such that the T(i,j) cell estimates fit with all of the flow marginal totals.   
 
IPF is often used in such cases when reliable cell estimates cannot be obtained directly, 
but estimates of the variables of interest are available at a higher level of aggregation.  
This is exactly the case described above for the FAF O-D-C-M matrix. The idea behind 
IPF is to seed each of the missing data cells with an initial estimate of some form, then 
iterate over all of the different margins of the matrix until a new balance has been 
obtained that does the least damage to the estimates in the rest of the matrix, and while 
retaining the values of the statistically more robust (typically) marginal totals that often 
represent the reported data. The approach is especially appealing as an application to 
commodity flow modeling. It is possible to take advantage of common traits, such as 
distance decay and the preference for using certain modes to handle certain shipment 
distances and commodity types, to develop intelligent missing element models. Of 
particular interest for FAF purposes is the combination of IPF with hybrid forms of log-
linear model, including spatial interaction models based on the derivation of “maximum 
likelihood” estimates of the missing cell values.    
 
3.3 Log-Linear Modeling of Missing Flows: Adding an “Alternative Data Model” 
Dimension 
 
Numerous practical examples of applying IPF-based methods exist, including some 
directly relevant applications to multi-dimensional movement tables [7, 8, 9, 10]. An 
example model may help. In this example a single commodity class is assumed for 
brevity and to solve for the other three (O-D-M) dimensions. When a region generates 
freight traffic, it is referred to as region “I;” and when a region receives this traffic, it is 
referred to as region “j.” Individual modes are designated “m.”  The data product sought 
is a fully filled matrix of freight flows, measured in annual tons moved, {Fijm}, broken 
down across each of these three dimensions. For this given commodity an estimate is 
made of the following “fully saturated” multiplicative model of the tons shipped from 
region i to region j by mode m as: 
 

= Fijm   τ0 x τi
O  x τj

D
  x  τm

M  x τim
OM x  τjm

DM x τij
OD  x τijm

ODM                            (4) 
 
which we would solve computationally using logs as:   
 

λλλλλλλθ + ODM
ijm

OD
ij

DM
jm

OM
im

M
m

D
j

O
iijm  +  +  +  +  +  +  = Fln                                            (5) 

 
The various λ's, often termed the model effects, are a set of model-estimated parameters 
that will return the original cell estimates. (The numerical example given in the Appendix 
shows how to compute these parameters). For example, the  effect returns the 
impacts of O-D separation on the resulting cell estimate, while represents the size of 
origin effect. Given a completely filled in flows matrix, equation (5) will reproduce the 

λOD
ij

  O
iλ
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cell estimates exactly. There is interest, for FAF purposes, in how such a model performs 
with missing data.   
 
Handling Zero-Valued Cells: The FAF flow matrix is a very large and very sparse multi-
dimensional table. That is, it contains a large number of zero valued cells. Determining 
which of these cells are true or structural zeros, and which are zero valued is needed 
because of the limitations of CFS sampling, termed sampling zeros.  In the CFS there are 
also many cells containing either an “S” or a “D” flag in the published tables: the S 
signifying a cell estimate too poor in quality to be reported (including all cells with a 
coefficient of variation of greater than 50%), the D signifying a need to suppress the cell 
value to avoid disclosing data about individual company activity.7 While such 
suppression causes the loss of data it also provides information that can be used in 
generating the cell-specific effects sought. (It also provides an additional rationale for 
carrying out this type of log-linear modeling). Where an “S” or a “D” occurs, there exists 
a positive flow value for that cell. Therefore, use of the log-linear modeling technique, 
described above, is needed to generate a suitable effect, and subsequently a positive flow 
estimate, for such a cell.  
 
But how good is the estimate of the size of these “empty” cells? In some cases this can be 
quite a large value, because a coefficient of variation (CV) of over 50% does not 
necessarily mean that only small O-D flows need to be dealt with. For example, it may 
imply a small sample containing a one very large flow and a number of smaller flows of 
that particular mode/commodity combination. To improve the ability to identify and 
estimate these missing cell values two additional data modeling steps have been taken: 
 
(1) First, information was obtained from the CFS Branch of the U.S. Census Bureau that 
identifies whether any sample responses, of whatever quality, were received for each cell 
in the O-D-C-M flow matrix, as part of the 2002 CFS. Where zero responses were 
obtained, these cells were initially treated as though they are structurally zero for the 
purposes of log-linear model effects generation and subsequent cell estimation via IPF.  
In some cases this may mean losing small volume O-D flows that might have been 
caught by another survey, but the assumption is that the size of such a flow is going to be 
quite small and for our purposes “under the radar”.  
 
(2) To further verify this assumption, as well as bring more qualitative information into 
the process, a search was done on possible reporting of flows within a specific O-D-C-M 
cell, among other databases. In particular, 2002 STB railcar waybill data were examined 
as well as USACE 2002 waterborne commerce O-D-C data, BTS 2002 air freight data, 
and other regional, commodity or industry specific sources, such as the Energy 
Information Administration’s (EIA) 2002 data on annual coal shipments (each dataset 
suitably modified to match FAF regions and commodity classes). It was determined 
whether a specific O-D-C-M cell in the FAF flow matrix has a flow estimate reported in 
any of these databases; and if so, then it is treated as a value to be filled in by the log-
linear model-based cell estimation procedure. This procedure is now described. 
                                                 
7 There are no “D” cells reported in the 2002 CFS, only “S” cells. Both types of suppression occur in the 
1993 and 1997 surveys. 
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The log-linear modeling process begins by assigning empty cells a value of = 1.0 (log = 
0.0).  Then, the additive equation (5) is applied from which we obtain an estimate of each 
cell’s missing value based only on the remaining, reported cell values. This estimate is 
further refined by introducing additional data into the problem, such as data from the 
railcar waybills. Here this waybills data acts as a second estimate, or “alternative data 
model,” of the rail flows in each commodity class (cf. Figure 1). At this point, 
consideration is given to combining these data in a number of ways.  The decision was 
made to treat the waybill flows as though they were a separate dimension, or a second set 
of commodity-specific tables, reproducing the rail portion of the CFS-based FAF flows 
matrix. This allowed filling in the missing valued cells using a combined CFS and 
waybills-inclusive log-linear model. The best way to combine these data is not obvious, 
however. It includes the use of simple additive weighting schemes such as [(1-w)*CFS  + 
w*Non-CFS], or more selective weighting schemes applied only to cells with 
questionable CFS values. The project’s initial use of the waybill data was of this latter 
type, pending a more defensible form of general weighting process. In this approach 
those CFS cells with zero values, but for which the waybills report a flow taking place, 
are assigned a positive effects value by the log-linear model. The subsequent application 
of the full IPF routine to these seeded effect cells than fills in a maximum likelihood 
value for that cell, subject to the appropriate CFS marginal control totals.  
 
A similar operation is also being carried out on those parts of the FAF O-D-C-M matrix 
involved with water and air freight transportation, using Corps of Engineers (USACE) 
and BTS/Office of Airline Information (BTS/OAI) data respectively as the second 
“model” of these mode-specific flows. In practice this means putting each of these data 
sources into its mode specific slice of what is termed the “alternative data model” 
dimension of the expanded FAF matrix. By housing these alternative modal data sources 
within a single dimension of the matrix in this manner, this allows, without loss of 
generality, for the application of more sophisticated across the board CFS + non-CFS 
weighting schemes in the future.  
 
It would also be preferable to carry out a similar operation for truck shipments, but in this 
case a lack of suitable data means that we need an alternative solution. The approach 
being used is described below. 
 
3.4 Incorporating Shipment Distance Information: Adding a Sixth Dimension  
 
Two alternatives were considered for enhancing the CFS truck movement matrices: (1) 
substitute a spatial interaction (SIA) model of flows in place of a second “data model;” or 
(2) add a sixth dimension to the FAF flow matrix using commodity specific shipment 
distance interval data from the CFS to force truck shipment volumes to comply with these 
implied ton-mileage totals. Given the level of effort and potential difficulty involved in 
fitting a series of spatial interaction models to the FAF truck flows this second approach 
was adopted for initial matrix construction. This introduced a sixth dimension into the 
log-linear modeling solution, based on CFS reported tons within mileage ranges of less 
than 50, 50-99, 100-249, 250-499, 500-749, 750-999, 1000-1499, 1500-2000, and over 

 10



2000 miles.8 Using this distance-interval data, distance-decay information is brought 
directly into the flow matrix adjustment process and avoids the need to assume a specific 
parameter value (or generate a set of parameter values) to fit each commodity specific 
SIA model. While the approach was thought to be necessary in order to control the 
resulting allocation of otherwise unreported truck flows, it was valuable to apply the 
method across all modes in the same manner, adding further “known” constraints to the 
estimated FAF flow matrix.  
 
Note also that this approach does not preclude future use of commodity specific 
interaction models to fill in the truck slice of the above described alternative data model 
dimension: as long as the constraints on distances traveled within the full FAF matrix are 
made to comply with distance interval-based tons, dollars, and reported ton-mileage 
totals, an operation taken care of by the IPF routine for any given set of marginal totals. 
Indeed, commodity specific modeling of such flows should be encouraged as a further 
means of adding information to the flow matrix. 
 
3.5 Modeling Annual Tons, Annual Shipment Value and Annual Ton-Miles 
 
Besides the 4 principal dimensions of the FAF O-D-C-M flow matrix, and the two added 
dimensions described above (i.e. the alternative data model and shipment distance 
interval dimensions), the operational flow estimation model also contains a seventh 
dimension. This dimension covers and relates the three different measures of annual 
freight activity we are simulating: annual tons shipped, annual dollar value of shipments, 
and annual ton-miles of freight transportation activity. While each of these measures can 
be treated within the current modeling framework as independent estimates of activity, 
and an O-D-C-D-M matrix generated for each, the FAF2 methodology also allows them 
to also be related through the log-linear model and IPF stages, as needed. The value of 
this sort of connection remains to be explored.  
 
 
4. Example Application to the FAF Four Dimensional O-D-C-M Matrix  
 
In this section the preliminary results of an initial and key step in the above flow matrix 
building process are presented: generating the effects matrix from CFS Table 17. Doing 
so also highlights the data gap-filling challenge faced.  The alternative data model and 
distance interval dimensions are not used in this example, for brevity. Table 17 is the 
most disaggregate of the published CFS tables, providing estimates of the annual tons, 
ton-miles and dollar value of shipments in the 43 SCTG 2-digit commodity classes 
shown in Table 1 (excluding Other/Unknown), also broken down by the 7 the modes of 
transport shown in Table 1. Note that Origins and Destinations in this table are by State, 
not FAF region. Working with these 50 State plus the District of Columbia regions for 
the present, the following describes selected effects (i.e. model parameter values) 
produced by a fully saturated 4-dimensional log-linear model of the form: 
 
                                                 
8 Only four distance intervals are used to generate the initial FAF matrix, due to a temporary limitation on 
computer memory: 0-50, 50-100, 100-250, and > 250 miles.  
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= Fijm   τ0 x τi
O  x τj

D
  x  τm

M  τm
C x τim

OM x  τjm
DM  x τcm

CM   x τij
OD x τic

OC  x τjc
DC 

             x τijm
ODM  x τijc

ODC x τicm
OCM x τjcm

DCM x τijcm
ODCM                               (6) 

 
 
Single Dimension Effects 
 
Table 2 shows, respectively, the individual origin state, destination state, commodity 
class and mode effects. The grand mean, τ0, in this run of the model = 4.67. 
 
          Table 2. One Dimensional Origin, Destination, Commodity and Mode Effects    
 

     Origins = States Plus DC, in alphabetic order
1.007 3.317 0.97 1.037 2.582 1.236 0.795 0.201 0.425 0.761
1.366 1.229 0.993 0.852 1.371 1.083 1.648 0.471 1.194 0.958
0.895 0.851 1.161 1.298 1.102 1.194 0.944 0.74 0.851 0.675
0.856 1.126 1.273 0.771 0.824 2.351 1.048 2.165 1.058 0.269
1.063 1.771 2.213 1.395 0.633 0.535 1.425 1.408 0.282 0.959
1.256  

     Destinations = States Plus DC, in alphabetic order
1.272 1.756 0.792 1.174 2.894 0.959 0.824 0.453 0.276 1.966
1.395 2.988 0.886 2.562 1.316 0.809 1.006 0.913 0.846 0.454
1.007 1.194 1.881 1.03 0.641 1.139 0.917 0.78 0.919 0.679
1.743 0.575 1.455 1.61 0.704 1.719 0.754 0.725 0.977 0.709
0.841 0.477 1.237 2.22 0.697 0.479 1.061 0.686 1.426 1.094
0.709  

     Commodities 1 through 43*
0.231 1.968 2.344 2.779 0.952 1.34 2.402 3.653 1.496 0.229
0.693 2.04 0.535 3.659 7.85 0 7.593 5.746 2.868 1.14
1.336 2.071 0.615 0.397 0.148 0.844 0.731 0.68 0.233 0.186
0.693 0.782 0.27 0.469 0.753 1.017 0.369 0.426 0.364 0.334
1.095 2.551

 Other/
      Truck        Rail       Water           Air  Truck-Rail   Other IM    Unknown

3.222 2.456 1.568 0.096 1.239 2.255 0.299

* Commodity 42 = SCCTG 43 (Mixed Freight)  
 
The following interpretations are in order. The larger- the-effect value, the greater its 
influence on the value of a cell’s shipment volume. Hence large States such and 
California and Texas with comparatively large economies have τ(i)s and τ(j)s much 
greater than 1, and much greater than the average for all States. Smaller States such as 
Rhode Island and Delaware have, in direct contrast, τ(i)s and τ(j)s below 1.000.   
 
The relationship between the τ(i)s and τ(j)s for each State is also of note, with a rough 
symmetry for most States but a clear asymmetry for a State such as Wyoming which 
exports a much greater tonnage, principally of Powder River Basin coal, relative to the 
annual tonnage of all freight coming into the State. 
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Table 3.  Mode-Commodity Effects τ(m,c) 
       Coefficients:  Value=0.9718   Tons=1.029 

 
     
Modes (Rows): Commodities (1 through 42*):

  
Truck 2.522 0.465 0.683 0.518 1.528

1.02 1.305 0.947 0.178 0.824
1.222 1.455 0.498 0.059 0.317

0 1.834 1.121 0.887 0.696
0.425 0.409 1.492 3.531 0.777
1.647 1.08 1.272 2.218 2.297
3.726 1.83 3.686 2.097 0.985
1.156 0.421 0.741 1.238 2.614
0.435 1.879

Rail 0 0.759 2.505 0.589 0
0.53 0.716 0.837 0 0

1.788 0.587 2.043 1.517 1.322
0 3.224 0.161 1.093 1.029
0 1.86 0.499 2.016 0

0.78 1.286 0.707 0 0
1.859 1.322 4.896 0.508 0.087
1.572 1.761 0 0 0
0.781 0.737

Water 0 4.866 4 5
0 2.548 0 0 0

0.394 0.489 0 0 0.266
0 1.271 2.154 8.456 7.523
0 0 0 0.326 0
0 0 0 0.181 0.568

0.087 7.499 0.137 0 0
0.142 0 0 0 0.169

0 0

Air 0.794 0 0.107 0 1.496
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

2.195 0 0.668 0.539 0
0 0 0 0.577 1.987
0 0.444 0.412 0.994 2.152

0.775 2.78 3.599 0 2.871
0 0

Truck-Rail 0 0 0.402 0 0
1.766 0.588 0.272 0 0
0.241 0 0 0 0

0 0 0 0 0.64
0 0 7.788 1.131 0

0.614 0.342 2.209 2.219 0.639
1.213 0.295 1.115 0.541 4.694
4.154 0 0 0 0
2.109 1.113
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Table 3 (Continued) 
 
Other Multiple 0 0 0 0 0
Modes 0 0 0 0 0

0 0 0 0 0
0 0.633 1.579 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0

Other & Unknown 0 0.546 0.934 1.902 0.433
0.527 0.631 2.338 3.25 0
4.264 2.246 0.525 5.977 8.414

0 0.132 1.021 0.114 0.256
1.509 0 0.316 1.521 0.744
0.638 1.06 0.253 4.541 1.405
1.209 0.903 1.895 2.135 1.421
2.589 0.631 0.527 0.467 1.947

0 0.326
* Commodity 42 = SCCTG 43 (Mixed Freight)  
 
Similarly, high volume (tonnage) commodities such as grains also have high λ(c)s: while 
truck as a mode, which accounts for the preponderance of all tons moved annually also 
has a high τ(m) relative to the other modes.   
 
Example Two-Dimensional Effect 
 
Table 3 shows the mode-commodity cross effects.  The effects in this table are shown as 
combined tonnage and value effects. The value and tons coefficients reported at the top 
of the table (i.e. 0.9718 for value and 1.0290 for tons), when multiplied through by the 
individual effects values in this table yield value only (in millions of dollars) and tons 
only effects (in thousands) respectively. 
   
5. Imports and Exports 
 
Recalling the discussion in Section 2 above, the 2002 FAF flow matrix includes annual 
freight movements between the United States and seven foreign regions: our immediate 
neighbors Canada and Mexico, as well as Latin and South America, Asia, Europe, the 
Middle East, and Rest-of-the-World.  Besides the CFS, the principal U.S. datasets dealing 
with imported and exported commodity shipments are USACE Foreign Waterborne 
Trade Data,9 BTS Transborder Freight dataset,10 and T-100 International Air Freight 
data.11  This section provides a brief description of how these data were used in 
construction of the complete FAF flow matrix.   

                                                 
9 See http://www.iwr.usace.army.mil/ndc/usforeign/index.htm. The import and export data are found at: 
http://www.iwr.usace.army.mil/ndc/db/foreign/data/  
10 http://www.bts.gov/transborder/
11 http://www.transtats.bts.gov/    
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In addition to the freight entering and exiting via the nation’s largest seaports and 
airports, a good deal of this trade now enters and leaves through the 14 FAF gateway 
regions. This includes the seven FAF Gateways located along the U.S.-Canadian or U.S.-
Mexican borders (cf. Figure 2 and Table 1). The data fusion task facing FAF2 requires 
that these annually imported and exported flows reflect not only the origination and 
destination, but also, where relevant, the FAF Gateway region through which they pass. It 
was decided therefore to develop an origin region - border region - destination region 
triple for each international movement.  
 
This presents a significant data fusion challenge, beginning with conversion to FAF2’s 43 
SCTG commodity classes from the Harmonized Schedule (HS) of commodity codes used 
in the STB dataset, and from the PMS codes used to record foreign waterborne commerce 
by the USACE. Both the waterborne commerce and multimodal surface transborder 
datasets each contain sufficient geographic detail to allow flows to and from each of the 
seven FAF foreign regions to be linked to the domestic FAF region of initial entry/exit. 
What they do not provide directly is the geographic detail necessary to associate these 
flows with originating or terminating domestic FAF regions.  
 
Waterborne Exports: While the CFS does provide estimates of the interior origination 
points and modes used for U.S. exports, the level of detail provided by these CFS export 
tables is much less than required, and generally less well developed than the tables of 
domestic movements [4]. The procedure used works as follows. Annual waterborne 
exports for each U.S. seaport are first cumulated into their respective FAF region. These 
flows are then traced back from each of these FAF seaport regions to their originating 
(i.e. U.S. internal) FAF regions using data from the CFS export tables to identify the most 
likely origination point for these shipments. Export flow totals in this case are based on 
the more reliable USACE waterborne commerce data set.12  
  
Waterborne Imports: Currently missing entirely from our national freight account is 
waterborne import data that ties the FAF internal region of destination to the appropriate 
foreign origination region. No readily available public domain database exists tracing 
either the true interior destination of most U.S. imports or the mode(s) by which this 
freight gets there [4].13 For the purposes of generating the initial FAF flows matrix 
imported waterborne flows are treated as either terminating in the FAF region containing 
the U.S. seaport of arrival, or moving inland by one or more modes of transportation. The 
split between these local (assumed truck) movements and inter-regional moves is based 
currently on the split observed in the overall mode and destination shares reported for 
these same commodities within the entire FAF matrix. Further modeling of this data gap 
is clearly warranted and additional information needs to be identified for this purpose, 
perhaps on a commodity- or region-specific basis.  
 

                                                 
12 Some 30% of all CFS export records in 2002 had their U.S. seaport of debarkation estimated. 
13  The (Port Import Export Reporting Service (PIERS) data set ( http://www.piers.com/default2.asp ), a 
product based on U.S Customs data offers the best available data on this activity. However, the data is 
proprietary, and is known to contain problems caused by reporting of inland freight destinations as the 
location of the importing company, rather than the true destination for these goods.  
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Landed Imports and Exports:  The Transborder Freight datasets provide O-D data for 
shipments between U.S. States, Mexican States and Canadian Provinces. This same data 
source also provides the annual volume of freight moved by truck, rail, pipeline, moved 
as mail, and moved in other modes through each U.S. Customs-operated border crossing.  
By fusing these international O-D and border-crossing specific datasets, a set of flows 
that captures the FAF foreign region—FAF border entry/exit region – FAF internal U.S. 
region triples is produced. This is done by: 
 

• assigning reported O-D volumes (after handling a number of idiosyncrasies in the 
dataset) to their most likely border crossings within each peripheral FAF region, 
with assignments weighted by the volume of traffic through each of these crossing 
points, and for each of the modes involved, then  

 
• carrying out a proportional allocation of these U.S. State-based import and export 

volumes to those FAF Metropolitan and “Rest-of-State” regions within each 
State, based on the overall level of domestic trading reported by the CFS for each 
commodity within each FAF region.  

 
Air Imports and Exports. The international air-freight data provided by BTS is in the 
form of total annual revenue tons transported between U.S. originating and terminating 
airports. No commodity detail is made available. For FAF2 purposes these data are 
currently combined with the T-100 domestic air movements between FAF regions. That 
is, only flights between U.S. airport pairs are currently being modeled within the FAF.  
These data are being handled within the “alternative data model” dimension of the full 
FAF matrix as described in Section 3.3 above. Future work should tie these data directly 
to each of the seven foreign FAF regions.   
 
6. Model Validation  
 
A method for testing the accuracy of the above approach is under development and will 
be used to ensure that estimated values of the missing cells in the FAF flow matrix are 
both reasonable and supported by the available statistical evidence. Ideally an 
independent estimate of the flows that this approach is trying to reproduce would be 
available. However, with the exception of annual state-to-state coal shipments (tonnages), 
as compiled and reported by the Energy Information Administration (based on its survey 
of coal shippers), there is little other commodity or industrial sector specific O-D-C-M 
data to draw on. This is, of course, the cause of our problem in the first place. The other 
source of data for validation purposes are the nation’s three major carrier-based and mode 
specific surveys: the STB railcar waybills, the Corps of Engineers waterborne commerce, 
and the Office of Airline Information’s air freight data. If any or all of these databases are 
used to help fill in the FAF matrix, as described in Section 3 above, then their use in 
validating the results of the data modeling is obviously tainted. There is also an additional 
problem with doing this. In all cases these mode-specific datasets do not produce true O-
to-D matrices: rather, they report station-to-station flows, ignoring the presence of often 
quite lengthy, typically truck drays on one or both ends of a shipment. Proper 
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comparisons between these flows and FAF flows will therefore require these drays to be 
accounted in some manner.   
 
In light of this situation a method that successfully reproduces known (CFS reported) cell 
values suggests itself. This is a common approach in statistical testing, in which a sub-set 
of the observed data is used to test the modeling of rest of the data set. Using this 
approach, known flow values are randomly and/or selectively removed from the observed 
FAF matrix. The log-linear model is then used to generate the necessary multi-
dimensional effects and the IPF routine is used to re-produce the necessary cell values. 
These individual cell values can then be compared to their observed values, using 
comparative statistics such as absolute or percentage differences. Broader tests on the 
overall similarity of observed versus model-altered matrices can also be carried out, using 
root mean square error or log-likelihood based pseudo r-squares. The assumption being 
made here is that if the approach can successfully reproduce these known flows then it 
will also produce reasonable estimates of flows in the case of missing cells.  
 
Given that the majority of cells that are missing data are likely to represent some of the 
smaller inter-regional/modal flows (for sampling reasons), this size bias may need to be 
accounted for in selecting known cells to reproduce.  However, it should be noted that 
there are many examples of known high volume flows that are also suppressed within the 
2002 CFS (and often similarly within the 1997 and 1993 surveys): for example where a 
few shippers of very large annual volumes exist within cells that fail either because they 
produce a coefficient of variation greater than 50% (the cut-off for CFS reporting) or for 
shipper confidentiality reasons.  
 
7. Model Extensions and Work in Progress  
 
Adding a temporal dimension offers a further extension to the above-described approach, 
allowing data from the 1997 and also the 1993 Commodity Flow Surveys to influence the 
result. Doing so in a statistically defensible manner has its challenges, however, 
especially so given the quite significant changes in such statistics as truck shipment 
distances over the past decade.  Some definitional differences between the three surveys 
will also need to be accounted for [4].    
 
Still to be integrated into the matrix generation process at the time of writing are the 
domestic waterborne commerce and domestic and international air freight datasets 
discussed. Both provide additional quality controls in the resulting FAF flow matrix 
through inclusion within the “alternative data model” dimension. They may also prove 
valuable as a means of adjusting aggregate marginal totals where the CFS appears to have 
under- or over- counted the level of activity. Further work on integrating the CFS exports 
data into the process is also warranted, as is the development of a more sophisticated U.S. 
imports model.  All of these improvements, plus the results of other commodity specific 
flow models can now be readily introduced into the multi-dimensional matrix generation 
process described in Section 3.  
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Technical Appendix:  A Complete Numerical Example 
 
A.1 Problem Definition 
 
This section of the paper provides a complete numerical example of the hybrid log-linear 
modeling procedure described above, and its use within an iterative proportional fitting 
(IPF) scheme, showing how different sources of data can be combined to help fill in a 
commodity flows matrix. It also demonstrates the flexibility of the approach by showing 
how three different estimates of missing cell (missing commodity flow) values can be 
generated from the same basic approach but under different assumptions about the value 
of using specific data sources. 
 
The 4x4 incomplete origin-to-destination matrix of annual commodity flows follows: 
 

                 

Destinations
Origins 1 2 3 4

1 300 60 90
2 200 500 30 60
3  300 80
4 40 80 150 200  

 
The three grey shaded cells are the missing values that will be estimated.  
 
For discussion purposes we will assume here that these values represent some multiple of 
annual tons shipped. In addition to this information we also have reported estimates of  
the total flow of the commodity coming into and going out of each of the four regions. 
This is the sort of information we can obtain from the U.S. Commodity Flow Surveys, i.e. 
reasonably comprehensive data on region-specific commodity productions and 
attractions, but incomplete data on the flows between regions (or their breakdowns within 
modes or commodity classes). The following table shows these origin and destination 
flow totals, which in total sum to 2,500 tons.  
 

Destinations
Origins 1 2 3 4

1 300  60 90 600
2 200 500 30 60 790
3   300 80 640
4 40 80 150 200 470

639 888 540 430 2500  
 
In what follows, an alternative solution for this flow matrix will be developed by using a 
spatial interaction model that makes use of the reported marginal totals given above and 
additional data on trip distances or costs to generate a fully filled in flows matrix. Note 
that an alternative source of such a matrix might be a second data source, such as a matrix 
based on the railcar waybill sample, or a matrix based on Corps of Engineers waterborne 
commerce data. The idea here is to generate a matrix that provides initial estimates of the 
missing flows using some form of prior intelligence or external data to complete the 
original CFS-based flows matrix. 
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A.2 A Spatial Interaction Model 
 
The first step is to fit a spatial interaction model to this trip production and consumption 
(“trip end”) data. For simplicity a SIA model of the form is selected: 
 
T(i,j) = O(i)*D(j)*F[c(i,j)]*A(i)*B(j)       (6) 
 
where T(i,j) = the annual tons shipped from region i to region j 
             O(i) = the annual tonnage shipped out or region i 
             D(j) = the annual tonnage shipped into region j 
            c(i,j) = a measure of travel impedance (cost, distance); and 
            F[c(i,j) ] = c(i,j)-1.5

 
The A(i) and B(j) are “trip end” balancing factors, i.e., 
 
A(i) = 1/∑j {B(j)*D(j)*F[(c(i,j)]}    for all i     (A1) 
 
B(j) = 1/∑i {A(i)*O(i)*F[(c(i,j)]}   for all j     (A2) 
 
Iterating between these A(i)s and B(j)s ensures, respectively,  that 
 
∑j  T(i,j)  = O(i) for all i and     ∑j  T(i,j) = D(j) for all j      (A3)  
 
That is, we get back our reported trip production and attraction (i.e. origin and 
destination) flow totals.  
 
Solving this model yields the following matrix of estimated flows:  
 

                  

331 136 46 87 600
178 548 17 47 790
82 145 340 73 640
48 59 139 224 470

639 888 542 431 2500  
 
In practice, such an SIA model has to be calibrated to determine the travel impedance 
parameters (give here simply as -1.5) and perhaps additional factors of importance to a 
specific commodity’s flow pattern.  
 
One way to use this interaction modeling result is to introduce its values for the three 
missing cells into the original matrix. This produces the following matrix:  
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Destinations
Origins 1 2 3 4

1 300 136 60 90 586
2 200 500 30 60 790
3 82 145 300 80 607
4 40 80 150 200 470

622 861 540 430 2453  
 
A new row and column margins emerge.  To recover the original margins, while still 
retaining the original values of all reported cells, an iterative proportion fitting can be 
used to adjust our three missing value estimates until the reported marginal totals are 
recovered.  This can be done by first extracting all of the observed cell values from the 
reported row and column totals. This leaves the following marginal residuals: 
 
  

                    

150
0

 260
0

99 308 0 0 410  
 
IPF is used to force the three missing valued cell estimates to conform to these residual 
row and column totals, giving the following result (rounded to nearest integers): 
 

                  

149 150
0

99 159 260
0

99 308 410  
 
Putting these numbers back into the original flows matrix then yields the final filled in 
matrix of flows, matched to the original row and column margins (after rounding). 
 

       

Destinations
Origins 1 2 3 4

1 300 149 60 90 600
2 200 500 30 60 790
3 99 159 300 80 640
4 40 80 150 200 470

639 888 540 430 2500  
 
This is one way to estimate the missing flows. A second and more demanding approach is 
presented below. 
 
A.3 Log-Linear Modeling of Missing Cell Values 
 
Next a log-linear model that incorporates data from both the original flows matrix and 
this SIA model estimated matrix is created. This model has the form: 
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T(m,i,j)  =  α  * τ (i)  *τ (j)  * τ(m)  *τ (i,m)  * τ(j,m)  * τ(i,j) * τ(i,j,m)                      (A4) 
 
where T(i,j,m) = the annual tons of a commodity moved between origin location i and 
destination location j, according to data model “m”.  Here data model m  = Model A or 
Model B, where Model A is the initial “observed” FAF matrix and Model B refers to the 
flows estimated by the spatial interaction model (or, if we wish, by an external data 
source). In practice this model in terms of its natural logs will be solved as: 
 

λλλλλλλ + ijmijjmimmjiijm  +  + +  +  +  +u = Tln                                                       (A5) 
 
where, 
 
u = 1/(I*J*M) * ∑i,j m ln [T(i,j,m)]           (A6)  
 
λi = 1/(J*M) * ∑j, m ln [T(i,j,m)]   - u          for all i         (A7) 
 
λj  = 1/(I*M) * ∑i, m ln [T(i,j,m)]  - u          for all  j         (A8)  
 
λm  = 1/(I*J)  * ∑i, j ln [T(i,j,m)]  - u          for all  m         (A9) 
 
λi, j  = 1/(M)  * ∑m ln [T(i,j,m)]   -  ( u + λi +  λj)  for all  (i,j) pairs      (A10) 
 
λi, m  = 1/(J)  * ∑j ln [T(i,j,m)]   -  ( u + λi +  λm)  for all  (i,m) pairs     (A11)  
 
λj,m  = 1/(I)  * ∑j ln [T(i,j,m)]   -  ( u  + λj +  λm)  for all  (j,m) pairs      A12) 
 
λi,j,m   = ln [T(i,j,m)]   - (u  +  λi  +  λj +   λm  +  λi, j + λi, m + λ j,.m )  for (i,j,m) triplets   (A13) 
 
for  i=1...I (=4) origin regions, J=1...J (=4)destinations, and m =1..M (=2) data models. 
 
Equation (10) is derived by solving for α and for each of the τ terms.  In log-linear 
parlance α is referred to as the grand mean and each τ as the “effect” on the resulting flow 
estimate from a specific dimension of the problem: analogous to the effects in an analysis 
of variance. That is, there are three one-way effects, ((i), (j) and (m), three two-way 
effects (i,j), (i,m) and (j,m), and one three-way effect (i,j,m). For example τ(i,j) = the 
contribution to the value of T(i,j,m) interaction from the pattern of interactions between i 
and j, irrespective of the mode of transport used.  Equation (5) is now applied to the 
following 4(i) x4 (j) x 2(m) matrix of flows: 
 
Model A (Reported) Flows: 
 

                            

300  60 90
200 500 30 60

  300 80
40 80 150 200  
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Model B (SIA Model) Flows: 
 

                             

331 136 46 87
178 548 17 47
82 145 340 73
48 59 139 224

 
Solving equation (11) for this matrix produces the following result: 

                        

300 275 60 90 725
200 500 30 60 790
125 251 300 80 756
40 80 150 200 470

665 1106 540 430 2741

331 136 46 87 600
178 548 17 47 790
82 145 340 73 640
48 59 139 224 470

639 888 542 431 2500  
 
The missing cells in the original Model A matrix now contain values. The Yellow 
(shaded) cells on the margins of this and the Model B matrix here are simply the row and 
column summations, i.e. the O(i)s and D(j)s. For example, the number 725 in the top 
right-hand corner of this matrix represents the sum of all flow out of origin (row) i=1 
according to Model A, after initial gap filling (i.e. 300+275+60+60= 725). Assuming that 
the SIA model has been generated using the observed set of O(i)s and D(j)s for this 
problem, then the cells in the Model A matrix need to be readjusted to match these 
“observed” totals. (Note that rounding error is the only reasons columns 3 and 4 differ 
between the two models in this example). This is accomplished by using IPF.   
 
A.4 Results of Iterative Proportional Fitting on the Gap Filled Flow Matrix 
 
The table below shows the results from the first six of these iterations using IPF to 
reconcile the flows in the matrix, first to the row and then to the column totals.  After six 
iterations, the result comes very close to the observed set of O(i)s and D(j)s (and could be 
forced to fit exactly). In the process the values in the three missing cells have been 
reduced so that they come closer to SIA model result, while retaining the higher values 
implied for these by the reported data (Model A). In doing this, the value for a number of 
Model A reported cells have been altered, causing some of them to better approximate 
the SIA model result also. The final result then is a compromise between reported and 
modeled flow data that also matches all reported marginal totals, estimates missing cell 
values, and does so while disturbing the structure of the rest of the flows matrix as little 
as possible. 
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248 227 50 75 600
200 500 30 60 790
105 213 254 68 640
40 80 150 200 470

594 1020 484 402 2500

267 198 56 80 601
215 435 34 64 748
113 185 285 73 656
43 70 168 214 495

639 888 542 431 2500

267 198 56 80 600
227 459 35 68 790
111 181 278 71 640
41 66 160 203 470

646 904 528 422 2500

264 194 57 81 597
225 451 36 69 782
110 178 285 72 644
40 65 164 208 477

639 888 542 431 2500

266 195 57 82 600
227 456 37 70 790
109 176 283 72 640
40 64 161 205 470

641 892 538 429 2500
 

265 194 58 82 599
226 454 37 70 788
108 176 285 72 641
40 64 162 206 472

639 888 542 431 2500  
 
 
Of note in this example are the rather large values estimated for the three missing cells. 
This results from their proximity to large diagonal flows in the reported, “Model A” 
flows matrix. These adjacent intra-zonal flows appear to have too much of an effect on 
the missing cell estimates (IF we believe the SIA Model B, results, that is).  Such effects 
are common to spatial interaction matrices. One way to handle this is to solve the log-
linear model and IPF on inter-zonal flows only.  Doing so in this case produces the 
following initial estimates for the three missing cells: 
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 86 60 90 236
200  30 60 290
80 89 80 249
40 80 150 270

320 256 240 230 1045

 136 46 87 269
178  17 47 242
82 145 73 300
48 59 139 246

308 340 202 207 1057  
 
that are now much lower than the Model B values in each case.  Performing IPF on this 
modified Model A matrix yields the following result (after six iterations): 
 
 

                       

0 122 60 87 269
176 0 23 43 242
95 128 0 77 300
37 90 119 0 246

308 340 202 207 1057  
 
The missing cell values are now much closer to their SIA model estimated values, i.e. 
122 vs. 136; 95 vs. 82; and 128 vs. 145.  
 
A.5 Discussion of the Results  
 
The above analysis has provided us with three different estimates of the missing value 
cells, as follows: 
 
                 SIA model            Log-Linear+SIA model         Log-Linear+SIA model   
                    w/IPF   w/IPF           w/IPF, w/o Intra-zonals  
 
cell 1,2  149                              194                         122  
cell 3,1              99                              108                  95  
cell 3,2            159                              176                                         128    
 
The combined Log-Linear with SIA Model approach offers one method for trying to 
make the most use of the existing data on commodity flows, while recognizing that some 
form of intelligent modeling is needed to fill in the values for missing cells. In this case 
this intelligence is introduced largely through a spatial interaction model that recognizes a 
common pattern in commodity movements: that the volume of such flows tends to 
attenuate with extra cost or distance moved. The SIA model might also be used more 
directly to estimate missing cells, using IPF to adjust these cell estimates to fit reported 
row and column totals. However, experience with fitting such interaction models 
indicates that there are often other factors at work that often cause such models, unless 
developed in rather elaborate frameworks using additional variables, to miss some of the 
real-world unevenness in the data.  
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If a flow matrix has most of its cells reported, of course, then the need for elaborate 
modeling is limited, at least for base year estimation. A simple interaction model or even 
a simple IPF routine might be used to fill in missing cells and match the result to 
observed, marginal totals. At the other extreme, where very few if any cells of the flow 
matrix are filled in, heavy reliance on some form of the more elaborate interaction model 
for the flow estimates is needed. Between these two extremes, sufficient reported data on 
some flows may be available to warrant their inclusion, and possibly retention of their 
reported value, in the matrix filling process. This is a gray area, however. If the above- 
described log-linear modeling technique is applied, then these cell values will change to 
some degree to accommodate missing value insertions, subject to marginal totals. If 
confidence intervals on cell values are available, then a comparison might be made of the 
amount that these values change from their original reported values and acceptance given 
where the value remains within the selected confidence interval. Marginal totals can also 
be allowed to vary and be tested in a similar fashion. In the above example it is assumed 
that these O(i)s and D(j)s are more robust estimates than individual cell values, and hence 
they are worth retaining. This isn’t always true. However, the cost of allowing some 
latitude in the value of marginal totals further complicates the problem and makes 
comparison to “official” totals something of a headache. In the final analysis the choice 
of modeling approach is an empirical one and depends on how believable a spatial 
interaction or other form of model is reproducing the real world flow pattern.    
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