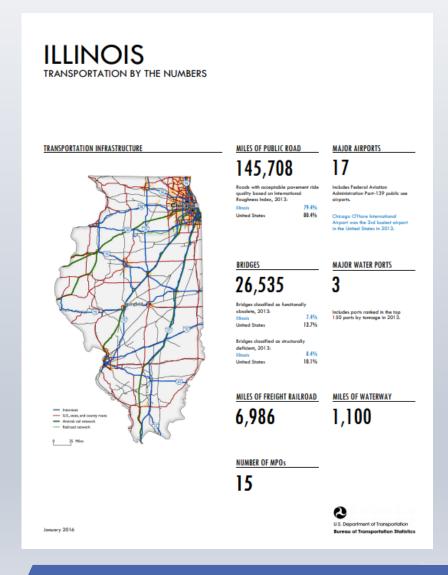
FHWA Freight Fluidity: Measuring Supply Chain Performance - National and State/Regional Programs

State/Regional Pilot Workshop Chicago - CMAP June 17, 2019

Agenda

11:00 - 11:20 AM	Agenda, Welcome, Introductions and Workshop Objectives:
	Marygrace Parker, I-95 Corridor Coalition (Freight Fluidity Team)
	Chicago/CMAP – Thomas Murtha, CMAP
	FHWA - Chandra Bondzie, Office of Freight Management
11:20 - 12:00 PM	Freight Fluidity Program National and State/Regional Overview
	- Joe Bryan, WSP USA
12:00 - 12:30 PM	Working Lunch
12:30 - 1:45 PM	How You Can Use The Tool – Interactive Presentation/Discussion -
	Alan Meyers, WSP USA
1:45 - 2:15 PM	Informing Supply Chains with FHWA NPMRDS Data - Bill Eisele, TTI
2:15 - 2:45 PM	Discussion/Key Insights from Participants - Marygrace Parker
2:45 – 3:00 PM	Wrap Up/Next Steps – Chandra Bondzie, Marygrace Parker


Welcome to CMAP and the State/Regional Freight Fluidity Pilot Workshop

Thomas Murtha Senior Planner Chicago Metropolitan Agency for Planning

Chicago Regional Pilot: Why This Workshop Here

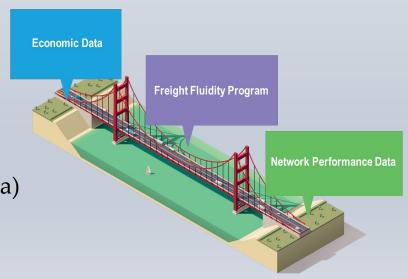
A quarter of all freight in the nation originates, terminates, or passes through metropolitan Chicago.

Introductions

- Name
- Agency
- Role in Freight

FHWA Freight Fluidity Program

Chandra Bondzie FHWA – Office of Freight Management Freight Fluidity Project Manager

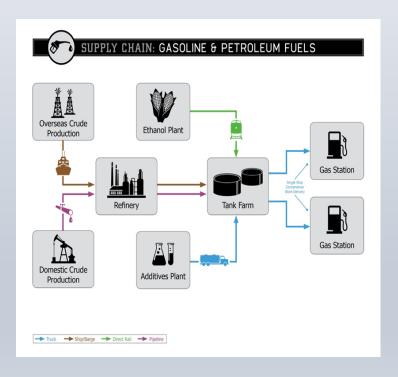

FHWA Freight Fluidity Program

Why?

- Respond to needs for State and regional freight planning as they
 - As they develop multimodal performance measures and freight policy to support statewide and regional freight planning and investment and comply with MAP21 and FAST ACT requirements
 - As the look to
- Bring a multimodal perspective to freight performance measurement
- Improve information on the performance of supply chains to benefit freight stakeholders
- Stimulate new private sector services and tools to plan and optimize freight trips

How?

- Establish national monitoring of freight fluidity
- Add to the "portfolio" of FHWA analysis tools (FAF, HEPGIS...)
- Build on work of previous FHWA work to measure supply chains
- Build on example work of other fluidity efforts (e.g. Transport Canada)


National Freight Fluidity Monitoring Program

Project Objective:

- Improve the measurement of freight transportation performance using a supply chain perspective
- Move supply chain performance monitoring from theory into real-world applications

Approach - Two Tracks:

- 1) National supply chain performance monitoring
 - Select a "market basket" of supply chains
 - Establish data sharing and procurement agreements
 - Collect and track three supply chain measures
 - Time, travel time reliability, cost
 - Producing quarterly reports for monitoring
- 2) State /Regional Pilots
 - Testing feasibility of applying national monitoring measures locally
 - Two pilots: metropolitan Chicago and metropolitan New York/New Jersey

FHWA Freight Fluidity Supply Chain Monitoring: National Program

Issues	Approaches
What we are measuring?	Travel time, travel time reliability, transportation cost Domestic movements – truck, rail, air, water Supply-chains (end-to-end across modes) and component segments
How much are we measuring?	Representative sample of critical US supply chains "Dow Jones Index" of key infrastructure, based on actual industries
How are index supply chains being chosen?	Selected for coverage of primary economic sectors and high-growth sectors Use of all modes, coverage of US regions Short and long-haul moves, domestic/cross-border/global supply chains
How is data being collected?	 Target industries identified and recruited Industries tell us their primary supply chain (commodity/mode/O-D) patterns No exchange of confidential information Project team assembles data to tabulate metrics for supply chain patterns Real data, not models Supply chain level, not regional/area level (like FAF or Transearch) Public and private sources have been identified
What are the outputs?	Initial "National Fluidity <i>Monitoring</i> Dashboard" with continuous quarterly updates

Freight Fluidity - Supply Chain Selection Criteria

- Data-driven analysis of national "market basket" candidates, identifying industry sectors and candidate firms
- Criteria:

Contribution to national GDP and projected growth among freight-dependent industries

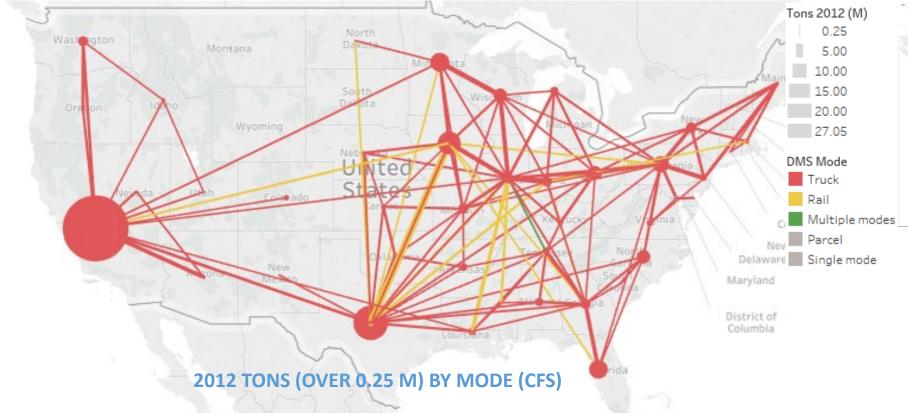
Geographic coverage of US: regions, urban centers, rural areas, gateways, corridors, direction of travel

Contribution to regional GDP and projected growth among freight-dependent industries

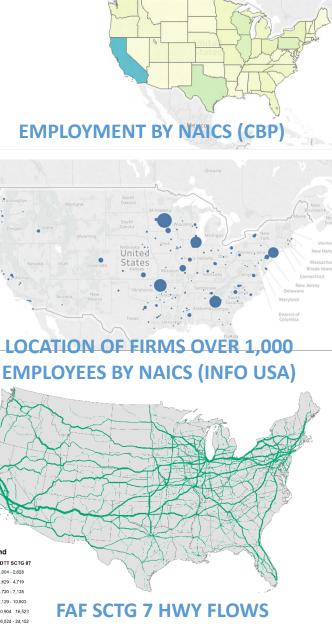
Industry importance to resilience of other supply chains and of population

Industry importance in US trade

Modal and travel distance diversity


FHWA Freight Fluidity Project – Industry Sectors

#	Industry Sector	Candidate Companies
1	Oilseed & Grain Farming and Production	ADM, Perdue, Cargill, ConAgra
2	Oil & Gas Extraction	Conoco Philips, EOG, Andarko, Pioneer, BP, Shell
3	Coal, Metal Ores, and Nonmetallic Minerals	Peabody, Arch, Cloud Peak, Powder River Basin LLC, Alliance
4	Food Products Manufacturing	Anheuser-Busch, Coca-Cola, Perdue, General Mills, Tyson
5	Dairy Products Manufacturing	Nestle, Kraft, Land O'Lakes, Cabot
6	Paper Manufacturing	Georgia Pacific, Weyerhauser, Int'l Paper
7	Petroleum and Coal Products Manufacturing	Exxon Mobil, Chevron, BP, Atlantic Richfield
8	Organic Chemicals Manufacturing	Mosaic, Monsanto, CF Industries, DuPont, BP
9	Resins and Synthetics Manufacturing	Dow, Lyondell, BASF
10	Pharmaceuticals Manufacturing	Eli Lilly, Merck, Johnson & Johnson
11	Plastics & Rubber Manufacturing	Goodyear, Dart Container, Newell (Rubbermaid)
12	Nonmetallic Minerals Manufacturing	Vulcan, Martin Marietta, Holcim, Cemex, Lafarge, Corning
13	Steel & Fabricated Metals Manufacturing	Arcelor, Nucor, Valmont
14	Construction/Industrial Machinery Manufacturing	Caterpillar, John Deere, Volvo
15	Computers/Electronic Products Manufacturing	Intel, Samsung, Qualcomm, Panasonic, GlobalFoundries, Cisco
16	Motor Vehicles & Parts Manufacturing	GM, Ford, Fiat/Chrysler, Toyota, Honda
17	Aircraft/Other Transportation Manufacturing	Boeing, Northrup Grum
		Lockheed Marrie
18	Medical Instruments Manufacturing	Sie


- Sectors included: Retail, technology, ecommerce, energy, chemicals, transportation equipment and machinery, etc.
- Major, recognizable companies targeted and recruited

Industry Sector Example: Food Products Manufacturing

- Definition: NAICS 311-2
- Typical Commodities: fresh, frozen, or processed meats, poultry, fish, fruits, vegetables; milled grains/oilseeds; sugars; baked goods; beverages
- Representative Supply Chains: Anheuser-Busch, Coca-Cola, Perdue, General Mills

NAICS GDP	Trade Share (CFS	D Modes (CFS Ton-	Tons and Avg Dist
	Value)	Miles)	(CFS)
\$493 B	4% E, 96% D or I	68% T, 20% R, 12% O	706 M tons, 440 miles

FHWA Freight Fluidity Tool - Dashboard

- Dashboard concept
 - Database listing each supply chain and component, structured to allow performance metrics to be appended over time
 - Dashboard visualization platform
 - Integration with FHWA HEP-GIS" and other existing display systems
- Contains travel time, travel time reliability and cost data
 - Cost data: "truck trip" not just fuel/time savings
 - Cost data sources (Chainalytics, waybill, carload...)

FHWA Freight Fluidity - Next Steps

- Collect/document feedback from this workshop today
 - And from workshop in NY/NJ Metro region (August 15, 2019)
- Finalize/complete tool content
 - AIS Water Data, feedback from workshops
- Develop and Provide Guidance Documents
- FHWA HOFM makes Freight Fluidity Quarterly Monitoring Data/tool available as resource
 - Complements other FHWA data tools for freight and system performance analysis

Overview of the Freight Fluidity Monitoring Program and Tool

Joe Bryan
Vice President and Manager of Freight and Logistics
WSP USA

FHWA Freight Fluidity Tool – Overview

Goal: a database and visualization/mapping tool to track the cost (price of service), reliability, and travel time for multimodal freight movement, across selected representative national supply chains, on a quarterly basis

Primary Data Sources	Information Obtained	Metrics Developed by Team
27 US companies reflecting major freight-dependent industry sectors	Descriptions of representative supply chains – goods, modes, O/D pairs – not confidential	Flow sequence of key trips Database rows describing trips Slots for performance metrics
NPMRDS	Highway link speeds	Truck metrics for O/D trips: median & mean speed, 95% travel time, Travel Time Index, Planning Time Index
Chainalytics	Commercial data on truck and rail IMX shipment prices	Truck & IMX metrics for O/D trips: cost per move, cost per mile
TransCore	Commercial data on rail travel times, IMX and carload	Rail metrics for O/D trips: median & mean speed, 95% travel time, Planning Time Index
STB Waybill / FRA	Confidential rail costs	[in progress]
US Army Corps of Engineers	Waterborne shipping costs and navigation system time/delay	[in progress]

Freight Fluidity Tool – Accessing Information

From Companies:

- Identify key supply chains (e.g., parts inbound, finished products outbound, parts for repair and maintenance, etc.)
- For each chain:
 - Is it a single end to end move, or are there different links (e.g. individual trips) in the chain?
 - What is the specific role of each link? (inbound raw materials, outbound goods to warehouses, delivery to customers, etc.)?
 - What is the commodity or commodities being moved?
 - What is the mode or modes you are using for each link?
 - What are origins and destinations for each link? (city-state pairs for each trip)
- NEVER ask about business sensitive information – volumes, customer names, carrier names, performance

From Vendors:

- Circumstances vary by vendor and business purpose
- Chainalytics example:
 - New data source
 - Purpose; benchmarking consortium, not data sales, but:
 - Data-driven performance improvement by public agencies benefits their members
 - Relatively small data sample will not compromise members
 - Purchase price defers consortium costs
- Developed model vendor agreement with negotiated price based on data volume, time periods and number of extract requests

Freight Fluidity – A Tool in the FHWA Toolbox

FHWA Freight Fluidity Tool – Software Platforms

- Two integrated platforms, both from existing suite of FHWA freight measurements tools:
 - Tableau database management, analysis and visualization platform

- FHWA/HOFM GIS data visualization tools, fed from Tableau
- The software platforms meet key criteria:
 - Ability to hold and process large data sets in time series, easily accept updates, and be versatile in use.
 - Accessibility of data to internal and external users, via export into common formats such as spreadsheet software, and directly on the platform without purchase of special tools.
 - Ability to restrict access to certain types or levels of data for certain groups of users.
 - Varied and high quality graphical and cartographical display must be provided, and the displays must be interactive with the data.
 - Stability as a dependable, tested tool.

The New Perspective of Freight Fluidity

- Distinguishing Features:
 - ☑ Focus: Supply chain performance
 - ☑ Key Performance Indicators: Speed, Reliability, Cost
 - ☑ End-to-End: Multimodal, multijurisdictional, flow sequences chained across stages

Current System Performance Capture (Typical)	Freight Fluidity Performance Capture
Travel Time	Travel Time (Industry/Supply Chain)
Travel Time Reliability	Travel Time Reliability (Industry/Supply Chain)
Cost of Wasted Time and Fuel	Transportation Cost (Market Price, Industry/Supply Chain)
Highway Only	Multimodal: Highway, Rail (IMX & Carload), Water

The Value of Freight Fluidity

Monitors Key Performance Indicators (KPIs) comparable to how freight system users monitor themselves

- Keeps public agencies abreast of developments affecting industry
- Anticipates concerns of Freight Advisory Committees and other users

Monitors KPIs that affect industrial competitiveness, supporting economic development and timely response to freight transportation issues

- Performance trends by industry sector
- Operational and investment actions

The Value of Freight Fluidity (continued)

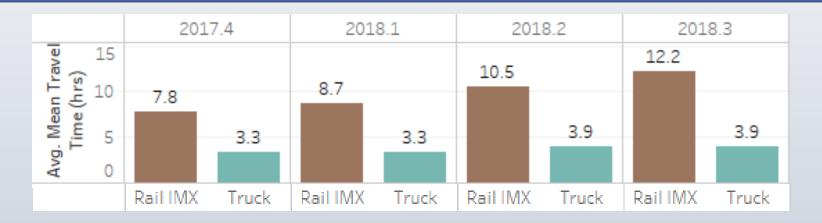
Provides working tool that complements and combines with others in the public agency toolbox

- Fills a gap: supply chain logistics structures and connected links
- Triggers diagnostics from the rest of the toolbox

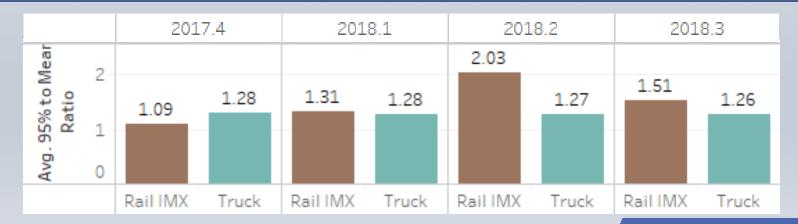
National platform supplies foundation for state and local agencies to build upon

- Additional sectors and companies
- Additional locations

National Trends in Supply Chain Travel Time


Major US Supply Chains End-to-End:

- Multimodal
- Multijurisdictional
- Flow sequences across stages
- 4Q 2017-3Q 2018
- → 102 lanes begin and/or end in IL



Questions Answered by Freight Fluidity

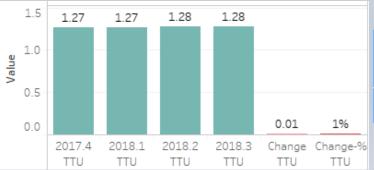
What is travel time by mode and how is that changing over time?



What is reliability by mode and how is that changing over time?

Questions Answered by Freight Fluidity

What are the costs by mode and how are they changing over time?



How do regional performance trends compare to national trends? Are we gaining or losing competitively?

Truck Travel Time Unreliability:

National

Truck Travel Time Unreliability:


Regional

Questions Answered by Freight Fluidity

What is the relative performance by industry and how is it changing over time? Are we taking care of key sectors?

Cost by Industry Cluster:

Truck & Rail

What is the relative performance by network segment and how is it changing over time? Are we taking care of key districts?

Percent Change in Truck Travel Time Unreliability

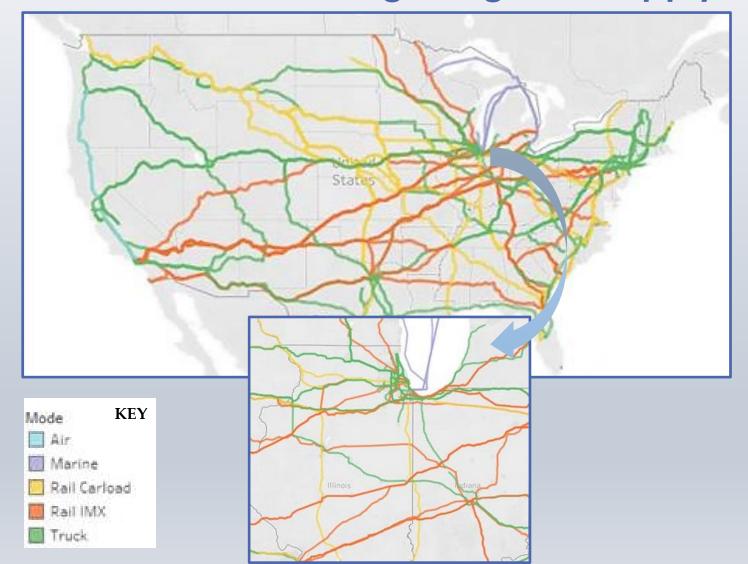
Application of Fluidity in Agency Toolbox

Situation: Supply chain reliability is falling in Northeastern Illinois. Why?

- Fluidity monitoring triggers the question
- Operational diagnostics available from agency:

• Weather	Construction locations
Continuous traffic counts	Bottleneck locations & performance
Crash trends by location	• Public events etc.

How is this affecting construction costs around Chicago?


- Fluidity monitoring provides topline answer
- Probe data tools (e.g. ATRI, INRIX, StreetLight, etc.) add breadth and detail:
 - − *Is the distance trucks can travel from ready-mix terminals in 90 minutes at 95% reliability declining?*

Freight Sectors in the Fluidity Platform

Industry Sector	Grand Total	Chicago Area O-D
Agriculture: Animal Products	11	
Agriculture: Dairy Products	9	
Manufacturing: Agricultural and Consumer Machinery	34	13
Manufacturing: Aircraft and Aerospace	5	
Manufacturing: Automotive	6	
Manufacturing: Beverages	5	
Manufacturing: Construction Machinery	23	6
Manufacturing: Consumer and OEM Electronics	17	
Manufacturing: Food Products	6	
Manufacturing: Organic Chemicals (Plastics et al)	9	
Manufacturing: Paper Products	12	
Manufacturing: Pharmaceutical, Medical, and Consumer Products	56	6
Manufacturing: Recreational/Commercial Transport Equipment	22	6
Manufacturing: Speciality OEM Electronic Components	12	
Mining and Processing: Cement and Rock	31	15
Mining and Processing: Coal	9	1
Mining and Processing: Fertilizers	12	1
Retail: Apparel Store	7	
Retail: Department Store	14	
Retail: Home Improvement	12	10
Retail: Major National	4	
Retail: Personal Care Products	27	
Retail/Wholesale/Distribution: Grocery, Food, Beverage	23	19
Transportation and Logistics	3	
Grand Total	369	84

- 27 companies in 24 sectors provided flow sequences for 369 freight movement lanes by origin-destination zip code, commodity, mode, and logistics purpose
 - 12 = Manufacturing
 - 6 = Retail
 - 3 = Mining
 - 2 = Agriculture
 - 1 = Transportation
- Scalable
 - Of 12 companies active around Chicago, 8 were added or expanded from national platform, with additional O-D moves covering more dealers, retail outlets, etc.
 - Result: 84 Chicago area lanes
 - Similar addition/expansion underway for New York
- Initially, four quarters of data for each data record
 - Data can be updated/maintained at moderate cost

Multimodal Routes in the Fluidity Platform 27 National & Chicago Regional Supply Chains

- Each record in the database has an assigned path
- GIS for each path will be included in the Tool – truck and non-truck
- Allows data attributes to be displayed at a path level in the Tool, in addition to table/chart summaries
- Links to FHWA/HOFM GIS tools for integration with other USDOT products
- More supply chains and lanes can be added to this foundation

Questions/Discussion

- (these will be prompts and noted on a whiteboard for later discussion/follow up)
- Do these "value proposition" points on why Fluidity/this tool can be of value hold true to you?
 - Are there others you are looking for? Believe these can add to?
- Looking at the questions Fluidity can answer and the Applications in Agency Toolbox
 - *Do these sound correct, are there others?*
 - Recommend they think about these as they look at how the tool is actually used in the next session

Working Lunch

How You Use the Freight Fluidity Tool Tool Demonstration/Interactive Discussion

Alan Meyers
Freight and Logistics Principal
WSP USA

Freight Fluidity Tool Demonstration

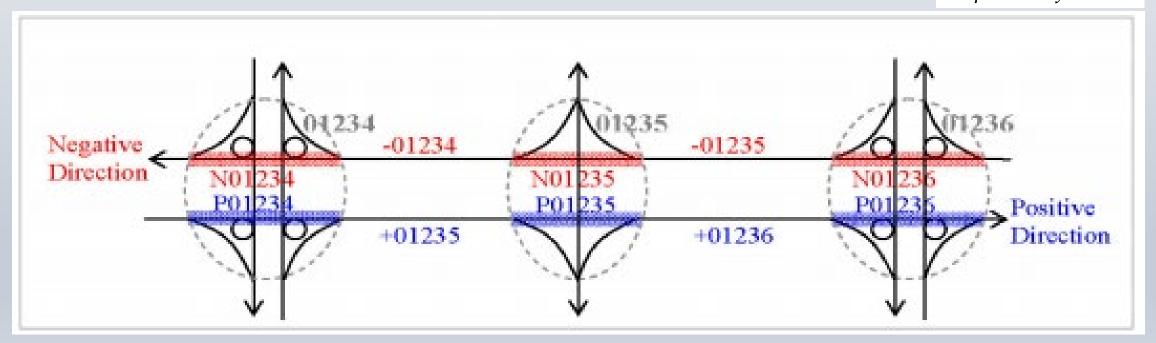
- 1. Excel Spreadsheet
 - a) Structure, data fields, data sources
 - b) Q and A, discussion
- 2. Tableau, National Level
 - a) Overview, dashboards, detail tabs
 - b) Q and A, discussion
- 3. Tableau, Chicago Focus
 - a) Dashboards, detail tabs
 - b) "Chained trip" analysis
 - c) Q and A, discussion
- 4. Expandability and Maintenance
 - a) General ideas for improved capabilities
 - b) Updating the spreadsheet and Tableau
 - c) Adding finer-grained geography
 - d) Q and A, discussion

Informing Supply Chains with FHWA NPMRDS Data

Bill Eisele Mobility Practice Leader and Senior Research Engineer Texas A&M Transportation Institute

Overview

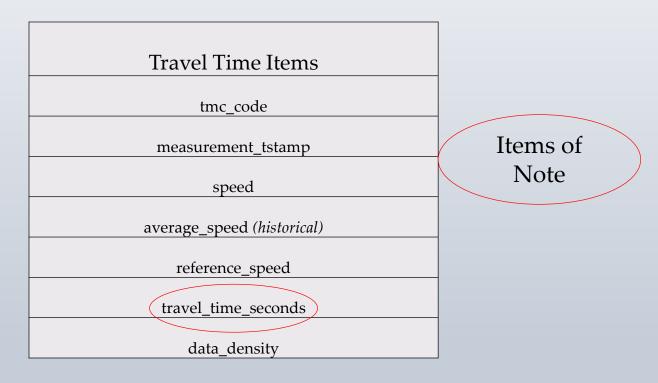
- What is NPMRDS and how do I get the data?
- How did we put these data on the supply chains?
 - An example supply chain application
- Data cautions (and opportunities)


National Performance Management Research Data Set

- FHWA acquired the first NPMRDS back in July 2013; and second version in April 2017
- Observed travel times from vehicle-based probes on Traffic Message Channels (TMC)
- Average travel times every 5 minutes on the National Highway System (when available) delivered every month
- Passenger, Freight, and "All Traffic" average travel times

Link to more NPMRDS information: https://ops.fhwa.dot.gov/perf measurement/index.htm

National Performance Management Research Data Set


- Free to use for State DOTs, MPOs and their contractors for performance management activities
- Includes selected Highway Performing Monitoring System (HPMS)
 attributes conflated from state HPMS submissions
 Depiction of TMCs

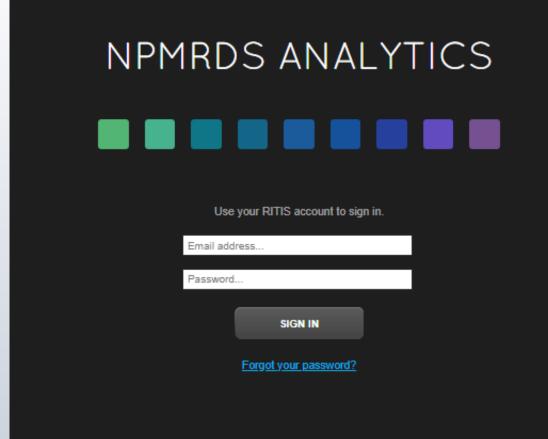
Link to more NPMRDS information: <u>https://ops.fhwa.dot.gov/perf_measurement/index.htm</u>

National Performance Management Research Data Set

Information available in NPMRDS for each road segment (TMC)

Sample travel time output from NPMRDS

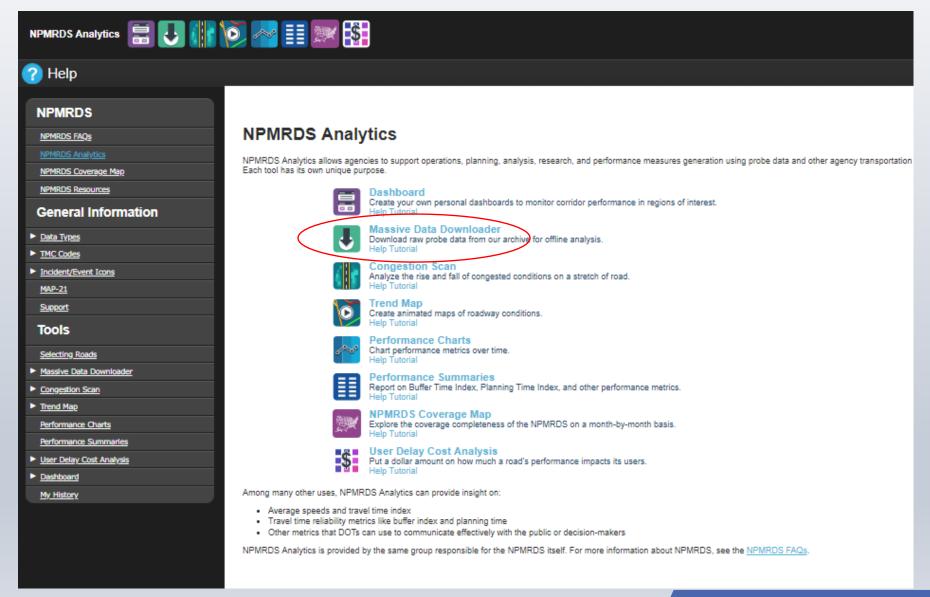
Metadata Item	Metadata Item(con't)		
tmc	f_system		
road	urban_code		
direction	faciltype		
intersection	structype		
state	thrulanes		
county	route_numb		
zip	route_sign		
start_latitude	route_qual		
start_longitude	altrtename		
end_latitude	aadt		
end_longitude	aadt_singl		
miles	aadt_combi		
<pre>road_order</pre>	nhs		
timezone_name	nhs_pct		
type	strhnt_typ		
country	strhnt_pct		
tmclinear	truck		
frc	isprimary		
border_set	active_start_date		
	active_end_date		

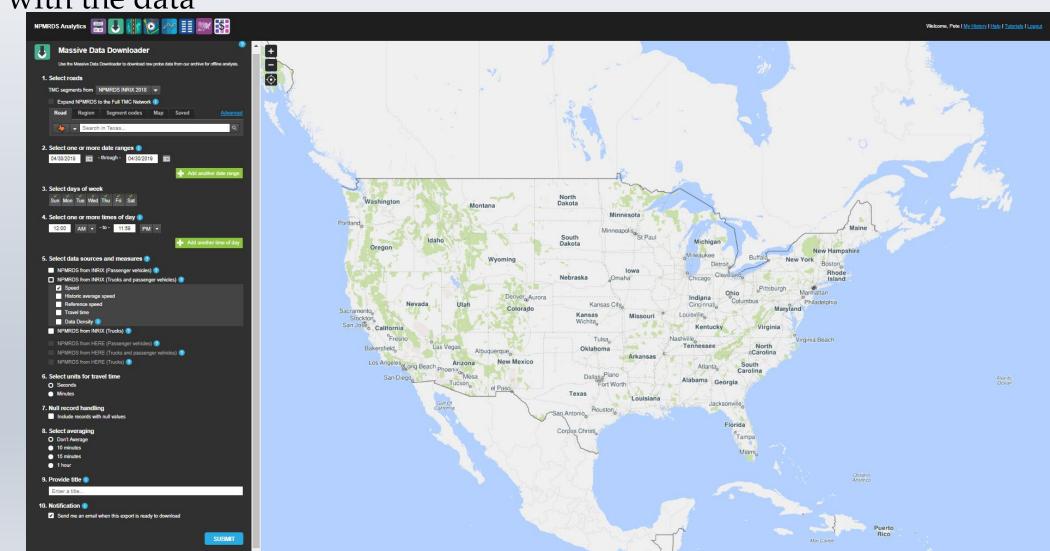

Sample TMC metadata from NPMRDS

How to Get the NPMRDS Data

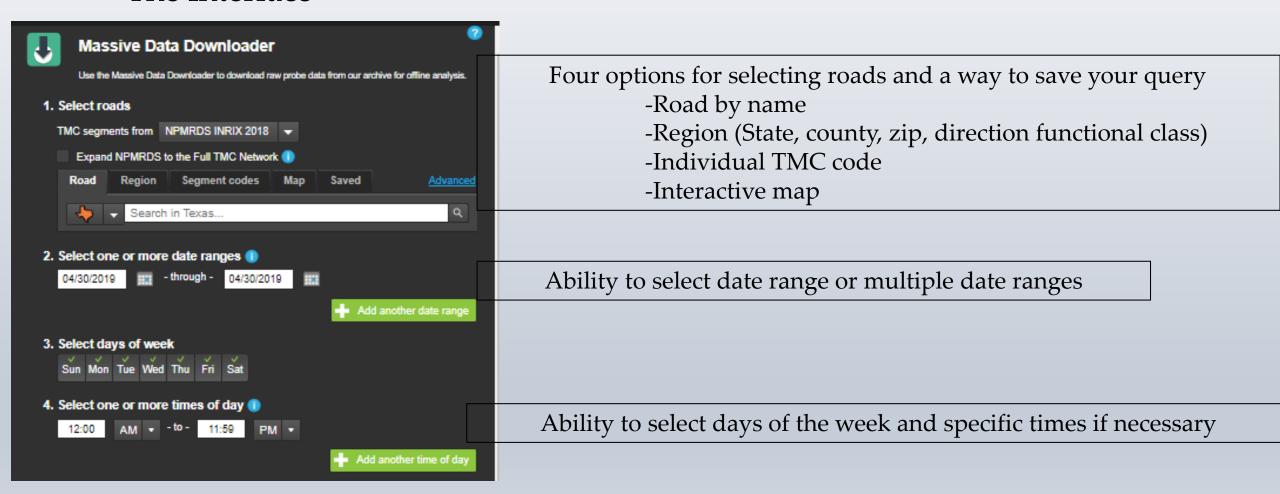
- 1. Sign the data sharing agreement
 - https://npmrds.ritis.org/dsa
- 2. Create a RITIS Account
 - https://www.ritis.org/register/
- 3. Access the data
 - https://npmrds.ritis.org
- A quick start guide can be found here: https://npmrds.ritis.org/static/help/docs/NPMRDSquickstart.pdf
- Tutorials can be found here: https://npmrds.ritis.org/analytics/tutorials/
- For additional questions, e-mail/contact: npmrds@ritis.org

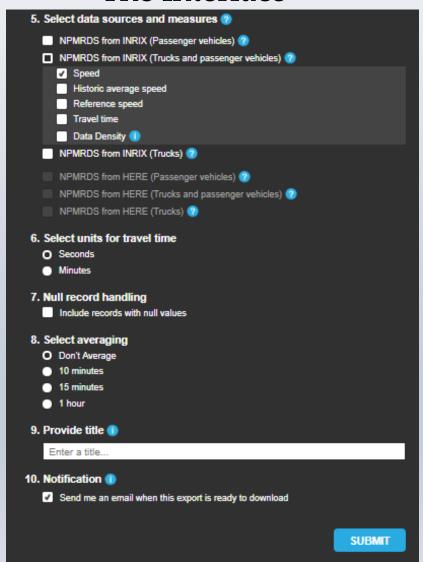
NPMRDS


- How to extract data from the NPMRDS interface (available after you have registered)
 - https://npmrds.ritis.org/analytics/


NPMRDS ANALYTICS

Access to NPMRDS Analytics is linked to your <u>RITIS</u> account. If you do not have a <u>RITIS</u> account, you can request one <u>here</u>.


In the meantime, you can see demonstrations of the tools in the suite in our tutorials.


 Massive Data Downloader uses the interface along the left side of the screen to interact with the data

The Interface

The Interface

Options for selecting speed and travel time data

- -Passenger vehicles
- -Trucks and passenger vehicles
- -Trucks

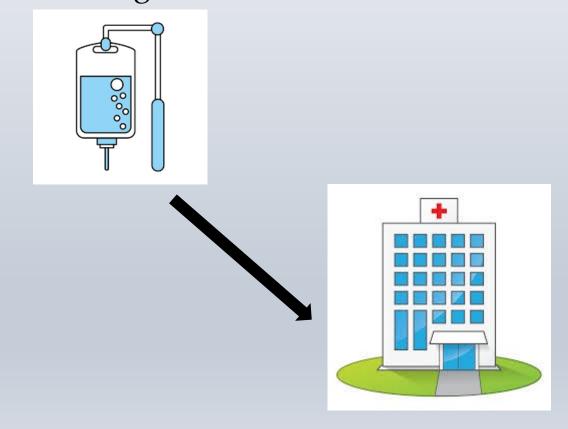
Travel time can be presented in seconds or minutes

Time intervals can be selected from the following

- -5 minute (Don't average)
- -10 minute
- -15 minute
- -60 minute (one hour)

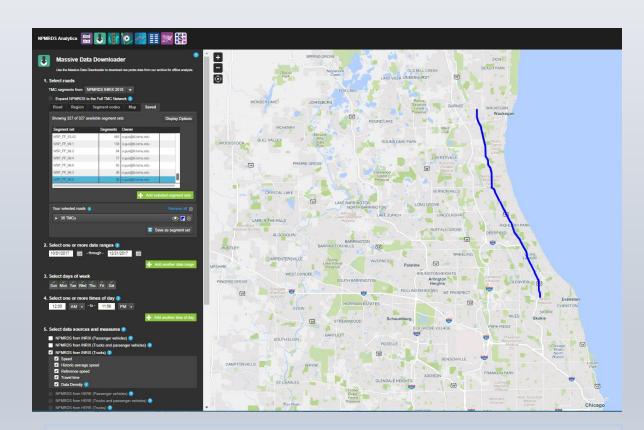
Email notification when submission is complete

With temperatures rising this summer, officials want to make sure there isn't a repeat of 1995. As a simple example, a question may be asked about the performance of a supply line of medical hydration fluids between a manufacturing plant and a medical center in the region.


JUL 12, 1995 - JUL 20, 1995

Great Chicago Heat Wave 1995

USA


The great heat wave of 1995 was a short but intense event that caused 830 deaths nationally, 525 of which occurred in the urban center of Chicago.

The event is consistent with larger climate trends. One of the clearest findings of climate science is that global warming amplifies the intensity, duration and frequency of extreme heat events.

Applying NPMRDS to a specific example of medical products

Collect observed travel times on NHS roadway network from the NPMRDS interface

Flow 99.5 Waukegan, IL 60085 to Evanston, IL 60201

Road Segment			_	peed	Refere Spec	_
			В		P	E
	1	tmc code	measurement tstamp	speed	reference speed	travel_time_seconds
	2	107N04226	10/01/2017 0:15	60	68	
	3	107N04226	10/01/2017 1:00	55	68	27.68
	4	107N04226	10/01/2017 1:15	55	68	27.68
	5	107N04226	10/01/2017 1:30	55	68	27.68
	6	107N04226	10/01/2017 1:45	35	68	43.5
	7	107N04226	10/01/2017 2:15	54.5	68	27.94
	8	107N04226	10/01/2017 2:45	60.93	68	24.99
	9	107N04226	10/01/2017 3:30	59	68	25.81
	10	107N04226	10/01/2017 5:30	62	68	24.56
	11	107N04226	10/01/2017 6:30	62	68	24.56
	12	107N04226	10/01/2017 7:00	58	68	26.25
	13	107N04226	10/01/2017 7:15	60	68	25.38
	14	107N04226	10/01/2017 8:30	59	68	25.81
	15	107N04226	10/01/2017 8:45	60	68	25.38
	16	107N04226	10/01/2017 9:30	65	68	23.43
	17	107N04226	10/01/2017 9:45	55	68	27.68
	18	107N04226	10/01/2017 10:15	57	68	26.71
	19	107N04226	10/01/2017 10:30	63	68	24.17
	20	107N04226	10/01/2017 11:00	55	68	27.68
	21	107N04226	10/01/2017 11:45	66	68	23.07
	22	107N04226	10/01/2017 12:00	54	68	28.2

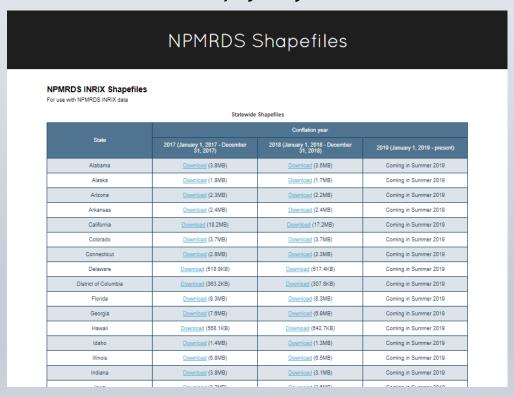
Sample travel time output from NPMRDS

Procedures to Calculate Statistics and Measures

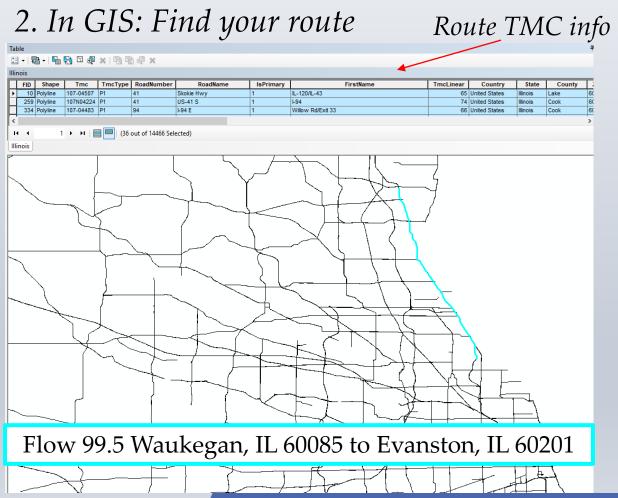
- 1. Line up road segments (TMCs) from origin to destination zip codes using NPMRDS roadway inventory
- 2. Using this virtual routing, calculate travel times for a trip starting every 15 minutes throughout a quarter ("traces")

- Procedures to Calculate Statistics and Measures (cont.)
 - 3. Record the time it takes to travel the route (O-D) for each starting time and day in the quarter then calculate the following statistics and measures
 - Statistics:
 - 50th percentile travel time (median),
 - Average travel time,
 - Free-flow travel time (15th percentile travel time),
 - 95th percentile travel time,
 - 99th percentile travel time
 - Average speed (distance/average travel time)
 - Measures:
 - TTI (50th percentile travel time / Free-flow travel time)
 - PTI (95th percentile travel time/ Free-flow travel time)
 - Average Delay (50th percentile travel time Free-flow travel time)

Results for Flow 99.5 Waukegan, IL 60085 to Evanston, IL 60201

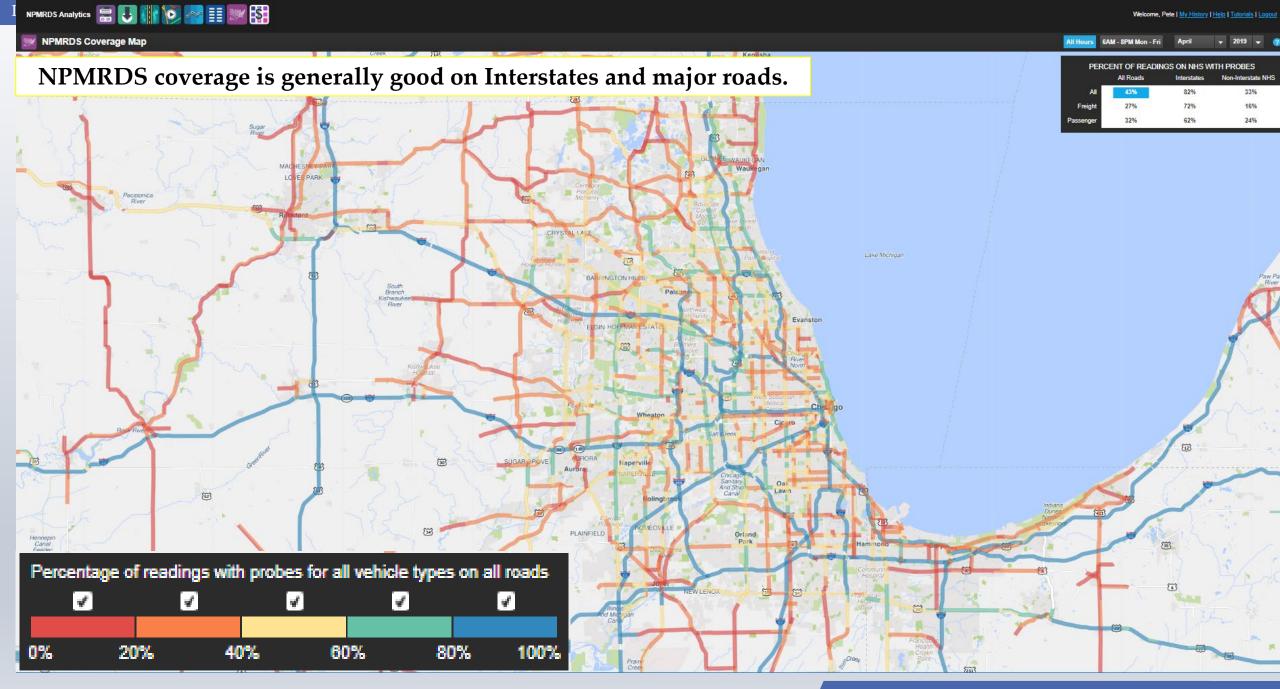

Statistics				Measures					
Year-Qtr	Flow Route	Free Flow Travel Time (hrs)	50% Travel Time (hrs)	95% Travel Time (hrs)	99% Travel Time (hrs)	Average Speed (mph)	Travel Time Index (50%/FF)	Planning Time Index (95%/FF)	Avg Delay (hrs) (50% TT- FF TT)
2017Q4	99.5	0.286	0.439	0.624	0.777	54	1.53	2.18	0.153
2018Q1	99.5	0.289	0.436	0.588	0.733	55	1.51	2.04	0.147
2018Q2	99.5	0.297	0.442	0.633	0.739	53	1.49	2.13	0.144
2018Q3	99.5	0.304	0.44	0.628	0.753	53	1.45	2.06	0.136

(Performed same process for all 52 Chicago regional flows)


For the medical hydration fluids of this supply chain (example), this method/tool:

- 1. Provides baseline data...
- 2. Can/will provide trend data...
- 3. Is good for planning purposes...

- Produced shapefiles for integration with Tableau and into the tool
 - Shapefiles can be downloaded from NPMRDS and filtered to the desired TMCs for a route
- 1. Download shapefile from NPMRDS



https://npmrds.ritis.org/analytics/shapefiles

NPMRDS Considerations/Cautions

- NPMRDS is discontinuous (a non-navigable network).
- NHS only and contains observed travel time / speed readings (no estimates)
 - To fill in beyond NHS compatible data coverage can be purchased from other data providers (e.g., ATRI, INRIX, HERE, StreetLight, etc.)
- Freight coverage is generally lower than passenger vehicles (because that's reality)
- Coverage is lower when there is less traffic (obviously) like overnights and weekends.
- HPMS meta data are typically lagging by two years (e.g., 2018 NPMRDS data contains 2016 HPMS data).

Example NPMRDS Uses/Activities

- FHWA Urban Congestion Quarterly/Annual Reports
 - https://ops.fhwa.dot.gov/perf_measurement/ucr/
- FHWA Freight Mobility Measures (and Tableau visualization)
 - National freight roadway bottlenecks (and ports, borders, airports, intermodal areas)
- FHWA Pooled Fund (Mobility Measurement in Urban Transportation)
 - Spatial and temporal coverage
 - Performance measure calculations & sensitivity analyses, etc.
- NPMRDS Technical Assistance Webinars
 - https://ops.fhwa.dot.gov/perf_measurement/index.htm

Discussion (and Contact Information)

- Questions on the data?
-the uses?
-the opportunity?
- Other?

Bill Eisele Texas A&M Transportation Institute 979 / 317-2461

b-eisele@tti.tamu.edu

Discussion/Key Insights

Workshop Participants
Marygrace Parker (Facilitator)

Next Steps

- Collect/document feedback from this workshop
 - And from workshop in NY/NJ Metro region (August 15, 2019)
- Finalize/complete tool content
 - AIS Water Data, feedback from workshops
- Develop and Provide Guidance Documents
- FHWA HOFM makes Freight Fluidity Quarterly Monitoring Data/tool available as resource
 - Complements other FHWA data tools for freight and system performance analysis